Suppr超能文献

基于卫星驱动的环境浓度预测上海地区妊娠期个体 PM 暴露水平。

Predicting gestational personal exposure to PM from satellite-driven ambient concentrations in Shanghai.

机构信息

Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China.

Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China; State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.

出版信息

Chemosphere. 2019 Oct;233:452-461. doi: 10.1016/j.chemosphere.2019.05.251. Epub 2019 May 31.

Abstract

BACKGROUND

It has been widely reported that gestational exposure to fine particulate matters (PM) is associated with a series of adverse birth outcomes. However, the discrepancy between ambient PM concentrations and personal PM exposure would significantly affect the estimation of exposure-response relationship.

OBJECTIVE

Our study aimed to predict gestational personal exposure to PM from the satellite-driven ambient concentrations and analyze the influence of other potential determinants.

METHOD

We collected 762 72-h personal exposure samples from a panel of 329 pregnant women in Shanghai, China as well as their time-activity patterns from Feb 2017 to Jun 2018. We established an ambient PM model based on MAIAC AOD at 1 km resolution, then used its output as a major predictor to develop a personal exposure model.

RESULTS

Our ambient PM model yielded a cross-validation R of 0.96. Personal PM exposure levels were almost identical to the corresponding ambient concentrations. After adjusting for time-activity patterns and meteorological factors, our personal exposure has a CV R of 0.76.

CONCLUSION

We established a prediction model for gestational personal exposure to PM from satellite-based ambient concentrations and provided a methodological reference for further epidemiological studies.

摘要

背景

已有大量研究报道,妊娠期细颗粒物(PM)暴露与一系列不良出生结局相关。然而,环境 PM 浓度与个体 PM 暴露之间的差异会显著影响暴露-反应关系的评估。

目的

本研究旨在通过卫星驱动的环境浓度预测妊娠个体 PM 暴露,并分析其他潜在决定因素的影响。

方法

我们收集了 2017 年 2 月至 2018 年 6 月期间上海 329 名孕妇的 762 个 72 小时个人暴露样本及其时间活动模式。我们建立了一个基于 1km 分辨率的 MAIA AOD 的环境 PM 模型,然后将其输出作为主要预测因子来开发个人暴露模型。

结果

环境 PM 模型的交叉验证 R 值为 0.96。个人 PM 暴露水平与相应的环境浓度几乎一致。调整时间活动模式和气象因素后,我们的个人暴露的 CV R 值为 0.76。

结论

我们建立了一个基于卫星环境浓度预测妊娠个体 PM 暴露的预测模型,为进一步的流行病学研究提供了方法学参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验