Suppr超能文献

新型镓治疗作用机制的深入见解:基于密度泛函理论/溶剂化模型研究镓与核苷酸还原酶底物的相互作用。

Novel Insights into Gallium's Mechanism of Therapeutic Action: A DFT/PCM Study of the Interaction between Ga and Ribonucleotide Reductase Substrates.

机构信息

Faculty of Chemistry and Pharmacy , Sofia University , 1164 Sofia , Bulgaria.

出版信息

J Phys Chem B. 2019 Jul 5;123(26):5444-5451. doi: 10.1021/acs.jpcb.9b03145. Epub 2019 Jun 20.

Abstract

The broadly accepted mechanism of gallium's therapeutic action postulates the inactivation of the upregulated/hyperactive enzyme ribonucleotide reductase (RNR) in cancer cells by substituting the redox-active iron by redox-silent gallium in the enzyme active site. Recently, another hypothesis for the Ga curative effect has been put forward: the metal cation can deactivate the enzyme by entrapping its substrates (nucleotide diphosphates; NDPs) into Ga-NDP complexes, lowering the free substrate levels in the cell. Several questions arise: Does gallium readily form complexes with NDPs? What are the preferable modes of metal binding to NDPs? Does, and if so, to what extent, the metal binding alter the native conformation of the substrate, thus influencing the process of substrate-enzyme recognition? Here, by employing density functional theory (DFT)/polarizable continuum model (PCM) calculations, we attempt to answer these questions. The results, which are in line with the available experimental data, lay support to the recent hypothesis about the curative effect of gallium, revealing that, by engaging the free NDPs in forming metal complexes, on the one side, and producing metal constructs that are not/poorly recognizable by the host enzyme, on the other side, gallium deprives RNR from its substrates, thus reducing the enzyme activity in malignant cells.

摘要

人们普遍接受的镓治疗作用机制假定,通过在酶活性位点用氧化还原惰性的镓替代上调/过度活跃的酶核糖核苷酸还原酶(RNR)中的氧化还原活性铁,从而使癌细胞中的酶失活。最近,提出了另一种镓治疗效果的假设:金属阳离子可以通过将其底物(核苷酸二磷酸;NDPs)捕获到 Ga-NDP 复合物中来使酶失活,从而降低细胞中游离底物的水平。由此产生了几个问题:镓是否容易与 NDPs 形成配合物?金属与 NDPs 结合的首选方式是什么?如果是,那么金属结合在何种程度上改变了底物的天然构象,从而影响底物-酶识别的过程?在这里,我们通过使用密度泛函理论(DFT)/极化连续体模型(PCM)计算,试图回答这些问题。与现有实验数据一致的结果支持了关于镓治疗效果的最新假设,表明通过使游离的 NDPs 参与形成金属配合物,一方面,以及另一方面产生宿主酶不易识别/识别不良的金属结构,镓使 RNR 失去其底物,从而降低了恶性细胞中的酶活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验