Suppr超能文献

受生物启发的锥形设计用于高效收集雾水。

Bioinspired conical design for efficient water collection from fog.

作者信息

Gurera Dev, Bhushan Bharat

机构信息

Nanoprobe Laboratory for Bio- and Nanotechnology and Biomimetics (NLBB), The Ohio State University , 201 W. 19th Avenue, Columbus, OH 43210-1142 , USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2019 Jul 29;377(2150):20190125. doi: 10.1098/rsta.2019.0125. Epub 2019 Jun 10.

Abstract

Nature is known for using conical shapes to transport the collected water from fog for consumption or storage. The curvature gradient of the conical shape creates a Laplace pressure gradient in the water droplets which drives them towards the region of lower curvature. Linear cones with linearly increasing radii have been studied extensively. A smaller tip angle cone transports water droplets farther because of higher Laplace pressure gradient. Whereas a larger tip angle with a larger surface slope transports water droplets because of higher gravitational forces. In this study, for the first time, a nonlinear cone with a concave profile has been designed with small tip angle and nonlinearly increasing radius to maximize water collection. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology (part 2)'.

摘要

自然界以利用锥形结构来收集雾中的水分以供消耗或储存而闻名。锥形结构的曲率梯度在水滴中产生拉普拉斯压力梯度,驱使水滴向曲率较低的区域移动。半径呈线性增加的线性圆锥体已得到广泛研究。顶角较小的圆锥体由于拉普拉斯压力梯度较高,能将水滴输送得更远。而顶角较大且表面斜率较大的圆锥体则由于重力较大而能输送水滴。在本研究中,首次设计了一种具有凹形轮廓的非线性圆锥体,其顶角小且半径呈非线性增加,以实现最大化的集水效果。本文是主题为“绿色科学与技术的仿生材料和表面(第2部分)”的一部分。

相似文献

1
Bioinspired conical design for efficient water collection from fog.
Philos Trans A Math Phys Eng Sci. 2019 Jul 29;377(2150):20190125. doi: 10.1098/rsta.2019.0125. Epub 2019 Jun 10.
2
Water droplet dynamics on bioinspired conical surfaces.
Philos Trans A Math Phys Eng Sci. 2019 Jul 29;377(2150):20190118. doi: 10.1098/rsta.2019.0118. Epub 2019 Jun 10.
3
Designing bioinspired conical surfaces for water collection from condensation.
J Colloid Interface Sci. 2020 Feb 15;560:138-148. doi: 10.1016/j.jcis.2019.10.059. Epub 2019 Oct 18.
4
Bioinspired triangular patterns for water collection from fog.
Philos Trans A Math Phys Eng Sci. 2019 Jul 29;377(2150):20190128. doi: 10.1098/rsta.2019.0128. Epub 2019 Jun 10.
5
Optimization of bioinspired conical surfaces for water collection from fog.
J Colloid Interface Sci. 2019 Sep 1;551:26-38. doi: 10.1016/j.jcis.2019.05.015. Epub 2019 May 6.
6
Designing bioinspired surfaces for water collection from fog.
Philos Trans A Math Phys Eng Sci. 2019 Feb 11;377(2138):20180269. doi: 10.1098/rsta.2018.0269.
7
Multistep Wettability Gradient on Bioinspired Conical Surfaces for Water Collection from Fog.
Langmuir. 2019 Dec 24;35(51):16944-16947. doi: 10.1021/acs.langmuir.9b02997. Epub 2019 Dec 13.
8
Water collection and transport in bioinspired nested triangular patterns.
Philos Trans A Math Phys Eng Sci. 2020 Mar 20;378(2167):20190441. doi: 10.1098/rsta.2019.0441. Epub 2020 Feb 3.
9
Optimization of bioinspired triangular patterns for water condensation and transport.
Philos Trans A Math Phys Eng Sci. 2019 Jul 29;377(2150):20190127. doi: 10.1098/rsta.2019.0127. Epub 2019 Jun 10.
10
Contact angles and movement of air bubbles on bioinspired conical surfaces.
J Colloid Interface Sci. 2020 Oct 1;577:530-541. doi: 10.1016/j.jcis.2020.05.079. Epub 2020 May 26.

引用本文的文献

1
Water collection and transport in bioinspired nested triangular patterns.
Philos Trans A Math Phys Eng Sci. 2020 Mar 20;378(2167):20190441. doi: 10.1098/rsta.2019.0441. Epub 2020 Feb 3.

本文引用的文献

1
Water droplet dynamics on bioinspired conical surfaces.
Philos Trans A Math Phys Eng Sci. 2019 Jul 29;377(2150):20190118. doi: 10.1098/rsta.2019.0118. Epub 2019 Jun 10.
2
Optimization of bioinspired conical surfaces for water collection from fog.
J Colloid Interface Sci. 2019 Sep 1;551:26-38. doi: 10.1016/j.jcis.2019.05.015. Epub 2019 May 6.
3
Designing bioinspired surfaces for water collection from fog.
Philos Trans A Math Phys Eng Sci. 2019 Feb 11;377(2138):20180269. doi: 10.1098/rsta.2018.0269.
4
Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection.
Adv Mater. 2013 Nov 6;25(41):5937-42. doi: 10.1002/adma.201301876. Epub 2013 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验