Suppr超能文献

IEEE 802.11ah原始数据和时分双工的精确能量建模与特性分析

Accurate Energy Modeling and Characterization of IEEE 802.11ah RAW and TWT.

作者信息

Santi Serena, Tian Le, Khorov Evgeny, Famaey Jeroen

机构信息

Internet and Data Lab (IDLab), Department of Mathematics and Computer Science, University of Antwerp-imec, 2000 Antwerp, Belgium.

Wireless Networks Lab, Institute for Information Transmission Problems, Russian Academy of Sciences, 127051 Moscow, Russia.

出版信息

Sensors (Basel). 2019 Jun 8;19(11):2614. doi: 10.3390/s19112614.

Abstract

Minimizing the energy consumption is one of the main challenges in iot networks. Recently, the IEEE 802.11ah standard has been released as a new low-power Wi-Fi solution. It has several features, such as raw and twt, that promise to improve energy consumption. Specifically, in this article we study how to reduce the energy consumption thanks to raw and twt. In order to do this, we first present an analytical model that calculates the average energy consumption during a raw slot. We compare these results to the IEEE 802.11ah simulator that we have extended for this scope with an energy life-cycle model for raw and twt. Then we study the energy consumption under different conditions using raw. Finally, we evaluate the energy consumption using twt. In the results, we show that the presented model has a maximum deviation from the simulations of 10% in case of ce and 7% without it. raw always performs better than csma when the traffic is higher and the usage of more slots has showed to have better energy efficiency, of up to the 76%, although also significantly increasing the latency. We will show how twt outperforms pure raw, by over 100%, when the transmission time is over 5 min.

摘要

将能耗降至最低是物联网网络面临的主要挑战之一。最近,IEEE 802.11ah标准作为一种新的低功耗Wi-Fi解决方案发布。它具有诸如原始模式和TWT等多种功能,有望改善能耗。具体而言,在本文中我们研究如何借助原始模式和TWT来降低能耗。为了做到这一点,我们首先提出一个分析模型,用于计算原始时隙期间的平均能耗。我们将这些结果与我们为此扩展的IEEE 802.11ah模拟器进行比较,该模拟器带有用于原始模式和TWT的能量生命周期模型。然后我们研究使用原始模式时在不同条件下的能耗。最后,我们评估使用TWT时的能耗。在结果中我们表明,所提出的模型在有CE的情况下与模拟结果的最大偏差为10%,在没有CE的情况下为7%。当流量较高时,原始模式的性能总是优于CSMA,并且使用更多时隙已显示出具有高达76%的更好能效,尽管这也会显著增加延迟。我们将展示当传输时间超过5分钟时,TWT的性能比纯原始模式高出100%以上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/248f/6603570/fcfee40f844b/sensors-19-02614-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验