Singh Vijay, Sakaki Shigeyoshi, Deshmukh Milind M
Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, India.
Fukui Institute for Fundamental Chemistry, Kyoto University, Nishihiraki-cho, Takano, Sakyo-ku, Kyoto, 606-8103, Japan.
J Comput Chem. 2019 Sep 15;40(24):2119-2130. doi: 10.1002/jcc.25864. Epub 2019 Jun 11.
Catalytic synthesis of dihydropyridine by transition-metal complex is one of the important research targets, recently. Density functional theory calculations here demonstrate that nickel(I) hydride complex (bpy)Ni H (bpy = 2,2'-bipyridine) 1 is a good catalyst for hydrosilylation of both quinoline and pyridine. Two pathways are possible; in path 1, substrate reacts with 1 to form stable intermediate Int1. After that, N ─C bond of substrate inserts into Ni─H bond of 1 via TS1 to afford N-coordinated 1,2-dihydroquinoline Int2 with the Gibbs activation energy (ΔG° ) of 21.8 kcal mol . Then, Int2 reacts with hydrosilane to form hydrosilane σ-complex Int3; this is named path 1A. In the other route (path 1B), Int1 reacts with phenylsilane in a concerted manner via hydride-shuttle transition state TS2 to afford Int3. In TS2, Si atom takes hypervalent trigonal bipyramidal structure. Formation of hypervalent structure is crucial for stabilization of TS2 (ΔG° = 17.3 kcal mol ). The final step of path 1 is metathesis between Ni─N bond of Int3 and Si─H bond of PhSiH to afford N-silylated 1,2-dihydroproduct and regenerate 1 (ΔG° = 4.5 kcal mol ). In path 2, 1 reacts with hydrosilane to form Int5, which then forms adduct Int6 with substrate through Si-N interaction between substrate and PhSiH . Then, N-silylated 1,2-dihydroproduct is produced via hydride-shuttle transition state TS5 (ΔG° = 18.8 kcal mol ). The absence of N-coordination of substrate to Ni in TS5 is the reason why path 2 is less favorable than path 1B. Quinoline hydrosilylation occurs more easily than pyridine because quinoline has the lowest unoccupied molecular orbital at lower energy than that of pyridine. © 2019 Wiley Periodicals, Inc.
过渡金属配合物催化合成二氢吡啶是近年来重要的研究目标之一。本文的密度泛函理论计算表明,氢化镍配合物(bpy)NiH(bpy = 2,2'-联吡啶)1是喹啉和吡啶硅氢化反应的良好催化剂。可能有两条途径;在途径1中,底物与1反应形成稳定的中间体Int1。之后,底物的N─C键通过TS1插入到1的Ni─H键中,得到吉布斯活化能(ΔG°)为21.8 kcal mol的N配位的1,2-二氢喹啉Int2。然后,Int2与硅烷反应形成硅烷σ-配合物Int3;这被命名为途径1A。在另一条途径(途径1B)中,Int1通过氢化物穿梭过渡态TS2与苯基硅烷协同反应得到Int3。在TS2中,Si原子呈超价三角双锥结构。超价结构的形成对于TS2的稳定至关重要(ΔG° = 17.3 kcal mol)。途径1的最后一步是Int3的Ni─N键与PhSiH的Si─H键之间的复分解反应,得到N-硅烷基化的1,2-二氢产物并再生1(ΔG° = 4.5 kcal mol)。在途径2中,1与硅烷反应形成Int5,然后通过底物与PhSiH之间的Si-N相互作用与底物形成加合物Int6。然后,通过氢化物穿梭过渡态TS5(ΔG° = 18.8 kcal mol)生成N-硅烷基化的1,2-二氢产物。TS5中底物与Ni不存在N配位是途径2不如途径1B有利的原因。喹啉的硅氢化反应比吡啶更容易发生,因为喹啉的最低未占据分子轨道能量比吡啶低。© 2019威利期刊公司