Department of Chemistry and Materials Innovation Factory , University of Liverpool , 51 Oxford Street , Liverpool L7 3NY , U.K.
School of Chemistry , University of St. Andrews , St. Andrews, Fife KY16 9ST , U.K.
Inorg Chem. 2019 Sep 16;58(18):11971-11977. doi: 10.1021/acs.inorgchem.9b00571. Epub 2019 Jun 4.
Here we discuss magnetic hybrid coordination frameworks in relation to the realization of new geometrically frustrated magnets. In particular, we present the nuclear and magnetic structures of one such system-the Fe-based oxalate fluoride framework KFe(CO)F-through analysis of the powder neutron diffraction and muon spectroscopy data. KFe(CO)F retains an orthorhombic 2 structure upon cooling to 2 K composed of quasi-one-dimensional iron fluoride chains connected to a distorted triangular network via oxalate anions. Previous magnetometry measurements of KFe(CO)F indicate that it is a strongly interacting system with a Weiss constant θ ≈ -300 K that undergoes a magnetic ordering transition at ≈ 20 K, yielding a frustration index, = |θ|/ ≈ 15, reflective of high-spin frustration. We determine the nature of this frustrated antiferromagnetic ordering below and show that the resulting magnetic structure is best described by a model in the '2' magnetic space group.
在这里,我们讨论了与新型几何各向异性磁体的实现相关的磁性杂化配位框架。具体而言,我们通过分析粉末中子衍射和μ子光谱数据,介绍了这样一个系统——基于铁的草酸盐氟化物框架 KFe(CO)F 的核和磁结构。在冷却至 2 K 时,KFe(CO)F 保留了正交 2 结构,由准一维铁氟化物链通过草酸盐阴离子连接到扭曲的三角形网络。先前对 KFe(CO)F 的磁测量表明,它是一个强相互作用的系统,魏斯常数 θ ≈ -300 K,在 ≈ 20 K 时经历磁有序转变,产生的受挫指数 = |θ|/ ≈ 15,反映了高自旋受挫。我们确定了低于 的这种受挫反铁磁有序的性质,并表明所得的磁结构最好由“2”磁性空间群中的模型来描述。