Suppr超能文献

基于无线传感器网络中相对角度矩阵的鲁棒最小二乘定位

Robust Least-SquareLocalization Based on Relative Angular Matrix in Wireless Sensor Networks.

作者信息

Tian Yuyang, Lv Jing, Tian Shiwei, Zhu Jinfei, Lu Wei

机构信息

College of Communications Engineering, Army Engineering University of PLA, Nanjing 210042, China.

出版信息

Sensors (Basel). 2019 Jun 10;19(11):2627. doi: 10.3390/s19112627.

Abstract

Accurate position information plays an important role in wireless sensor networks (WSN), and cooperative positioning based on cooperation among agents is a promising methodology of providing such information. Conventional cooperative positioning algorithms, such as least squares (LS), rely on approximate position estimates obtained from prior measurements. This paper explores the fundamental mechanism underlying the least squares algorithm's sensitivity to the initial position selection and approaches to dealing with such sensitivity. This topic plays an essential role in cooperative positioning, as it determines whether a cooperative positioning algorithm can be implemented ubiquitously. In particular, a sufficient and unnecessary condition for the least squares cost function to be convex is found and proven. We then propose a robust algorithm for wireless sensor network positioning that transforms the cost function into a globally convex function by detecting the null space of the relative angle matrix when all the targets are located inside the convex polygon formed by its neighboring nodes. Furthermore, we advance one step further and improve the algorithm to apply it in both the time of arrival (TOA) and angle of arrival/time of arrival (AOA/TOA) scenarios. Finally, the performance of the proposed approach is quantified via simulations, and the results show that the proposed method has a high positioning accuracy and is robust in both line-of-sight (LOS) and non-line-of-sight (NLOS) positioning environments.

摘要

准确的位置信息在无线传感器网络(WSN)中起着重要作用,基于节点间协作的协作定位是提供此类信息的一种很有前景的方法。传统的协作定位算法,如最小二乘法(LS),依赖于从先前测量中获得的近似位置估计。本文探讨了最小二乘法算法对初始位置选择敏感的基本机制以及处理这种敏感性的方法。这个主题在协作定位中起着至关重要的作用,因为它决定了协作定位算法是否能够普遍实现。特别是,找到了并证明了最小二乘代价函数为凸函数的一个充分不必要条件。然后,我们提出了一种用于无线传感器网络定位的鲁棒算法,当所有目标都位于其相邻节点形成的凸多边形内部时,通过检测相对角度矩阵的零空间将代价函数转换为全局凸函数。此外,我们进一步改进算法,使其适用于到达时间(TOA)和到达角度/到达时间(AOA/TOA)场景。最后,通过仿真对所提方法的性能进行了量化,结果表明所提方法具有较高的定位精度,并且在视距(LOS)和非视距(NLOS)定位环境中都具有鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验