Cuadrado S, Salas P, Goicoechea J R, Cernicharo J, Tielens A G G M, Báez-Rubio A
Instituto de Física Fundamental (IFF-CSIC). Calle Serrano 121-123, E28006 Madrid, Spain.
Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden, The Netherlands.
Astron Astrophys. 2019 May 1;625. doi: 10.1051/0004-6361/201935556. Epub 2019 May 7.
A significant fraction of the molecular gas in star-forming regions is irradiated by stellar UV photons. In these environments, the electron density ( ) plays a critical role in the gas dynamics, chemistry, and collisional excitation of certain molecules.
We determine in the prototypical strongly irradiated photodissociation region (PDR), the Orion Bar, from the detection of new millimeter-wave carbon recombination lines (mmCRLs) and existing far-IR [Cii] hyperfine line observations.
We detect 12 mmCRLs (including , , and transitions) observed with the IRAM 30m telescope, at ~ 25″ angular resolution, toward the H/H dissociation front (DF) of the Bar. We also present a mmCRL emission cut across the PDR.
These lines trace the C/C/CO gas transition layer. As the much lower frequency carbon radio recombination lines, mmCRLs arise from neutral PDR gas and not from ionized gas in the adjacent Hii region. This is readily seen from their narrow line profiles (Δ = 2.6 ± 0.4 km s) and line peak velocities ( = +10.7 ± 0.2 km s). Optically thin [Cii] hyperfine lines and molecular lines - emitted close to the DF by trace species such as reactive ions CO and HOC - show the same line profiles. We use non-LTE excitation models of [Cii] and mmCRLs and derive = 60 - 100 cm and = 500 - 600 K toward the DF.
The inferred electron densities are high, up to an order of magnitude higher than previously thought. They provide a lower limit to the gas thermal pressure at the PDR edge without using molecular tracers. We obtain ≥ (2 - 4)·10 cm K assuming that the electron abundance is equal to or lower than the gas-phase elemental abundance of carbon. Such elevated thermal pressures leave little room for magnetic pressure support and agree with a scenario in which the PDR photoevaporates.
恒星形成区域中相当一部分分子气体受到恒星紫外光子的照射。在这些环境中,电子密度( )在气体动力学、化学以及某些分子的碰撞激发中起着关键作用。
我们通过探测新的毫米波碳复合线(mmCRLs)以及现有的远红外[Cii]超精细线观测结果,来确定典型的强照射光解离区域(PDR)——猎户座棒状星云——中的电子密度。
我们使用IRAM 30米望远镜,以约25″的角分辨率,朝着棒状星云的H/H解离前沿(DF)探测到了12条mmCRLs(包括 、 和 跃迁)。我们还展示了一条穿过PDR的mmCRL发射剖面图。
这些谱线追踪了C/C/CO气体过渡层。作为频率低得多的碳射电复合线,mmCRLs源自中性PDR气体,而非相邻Hii区域中的电离气体。从它们狭窄的谱线轮廓(Δ = 2.6 ± 0.4 km s)和谱线峰值速度( = +10.7 ± 0.2 km s)很容易看出这一点。光学薄的[Cii]超精细线和分子线——由诸如反应离子CO和HOC等痕量物质在DF附近发射——显示出相同的谱线轮廓。我们使用[Cii]和mmCRLs的非局部热动平衡激发模型,得出朝着DF的 = 60 - 100 cm 和 = 500 - 600 K。
推断出的电子密度很高,比之前认为的高出一个数量级。它们在不使用分子示踪剂的情况下,为PDR边缘的气体热压力提供了一个下限。假设电子丰度等于或低于气相碳元素丰度,我们得到 ≥ (2 - 4)·10 cm K。如此高的热压力几乎没有给磁压力支撑留下空间,这与PDR发生光蒸发的情景相符。