Suppr超能文献

通过毫米波碳复合线直接估算猎户座星云棒状光解离区的电子密度。

Direct estimation of electron density in the Orion Bar PDR from mm-wave carbon recombination lines.

作者信息

Cuadrado S, Salas P, Goicoechea J R, Cernicharo J, Tielens A G G M, Báez-Rubio A

机构信息

Instituto de Física Fundamental (IFF-CSIC). Calle Serrano 121-123, E28006 Madrid, Spain.

Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden, The Netherlands.

出版信息

Astron Astrophys. 2019 May 1;625. doi: 10.1051/0004-6361/201935556. Epub 2019 May 7.

Abstract

CONTEXT

A significant fraction of the molecular gas in star-forming regions is irradiated by stellar UV photons. In these environments, the electron density ( ) plays a critical role in the gas dynamics, chemistry, and collisional excitation of certain molecules.

AIMS

We determine in the prototypical strongly irradiated photodissociation region (PDR), the Orion Bar, from the detection of new millimeter-wave carbon recombination lines (mmCRLs) and existing far-IR [Cii] hyperfine line observations.

METHODS

We detect 12 mmCRLs (including , , and transitions) observed with the IRAM 30m telescope, at ~ 25″ angular resolution, toward the H/H dissociation front (DF) of the Bar. We also present a mmCRL emission cut across the PDR.

RESULTS

These lines trace the C/C/CO gas transition layer. As the much lower frequency carbon radio recombination lines, mmCRLs arise from neutral PDR gas and not from ionized gas in the adjacent Hii region. This is readily seen from their narrow line profiles (Δ = 2.6 ± 0.4 km s) and line peak velocities ( = +10.7 ± 0.2 km s). Optically thin [Cii] hyperfine lines and molecular lines - emitted close to the DF by trace species such as reactive ions CO and HOC - show the same line profiles. We use non-LTE excitation models of [Cii] and mmCRLs and derive = 60 - 100 cm and = 500 - 600 K toward the DF.

CONCLUSIONS

The inferred electron densities are high, up to an order of magnitude higher than previously thought. They provide a lower limit to the gas thermal pressure at the PDR edge without using molecular tracers. We obtain ≥ (2 - 4)·10 cm K assuming that the electron abundance is equal to or lower than the gas-phase elemental abundance of carbon. Such elevated thermal pressures leave little room for magnetic pressure support and agree with a scenario in which the PDR photoevaporates.

摘要

背景

恒星形成区域中相当一部分分子气体受到恒星紫外光子的照射。在这些环境中,电子密度( )在气体动力学、化学以及某些分子的碰撞激发中起着关键作用。

目的

我们通过探测新的毫米波碳复合线(mmCRLs)以及现有的远红外[Cii]超精细线观测结果,来确定典型的强照射光解离区域(PDR)——猎户座棒状星云——中的电子密度。

方法

我们使用IRAM 30米望远镜,以约25″的角分辨率,朝着棒状星云的H/H解离前沿(DF)探测到了12条mmCRLs(包括 、 和 跃迁)。我们还展示了一条穿过PDR的mmCRL发射剖面图。

结果

这些谱线追踪了C/C/CO气体过渡层。作为频率低得多的碳射电复合线,mmCRLs源自中性PDR气体,而非相邻Hii区域中的电离气体。从它们狭窄的谱线轮廓(Δ = 2.6 ± 0.4 km s)和谱线峰值速度( = +10.7 ± 0.2 km s)很容易看出这一点。光学薄的[Cii]超精细线和分子线——由诸如反应离子CO和HOC等痕量物质在DF附近发射——显示出相同的谱线轮廓。我们使用[Cii]和mmCRLs的非局部热动平衡激发模型,得出朝着DF的 = 60 - 100 cm 和 = 500 - 600 K。

结论

推断出的电子密度很高,比之前认为的高出一个数量级。它们在不使用分子示踪剂的情况下,为PDR边缘的气体热压力提供了一个下限。假设电子丰度等于或低于气相碳元素丰度,我们得到 ≥ (2 - 4)·10 cm K。如此高的热压力几乎没有给磁压力支撑留下空间,这与PDR发生光蒸发的情景相符。

相似文献

1
Direct estimation of electron density in the Orion Bar PDR from mm-wave carbon recombination lines.
Astron Astrophys. 2019 May 1;625. doi: 10.1051/0004-6361/201935556. Epub 2019 May 7.
2
Complex organic molecules in strongly UV-irradiated gas.
Astron Astrophys. 2017 Jul;603. doi: 10.1051/0004-6361/201730459.
5
Spatial distribution of FIR rotationally excited CH and OH emission lines in the Orion Bar PDR.
Astron Astrophys. 2017 Mar;599. doi: 10.1051/0004-6361/201629445. Epub 2017 Feb 21.
6
Spatially resolved images of reactive ions in the Orion Bar.
Astron Astrophys. 2017 May;601. doi: 10.1051/0004-6361/201730716. Epub 2017 May 24.
7
[Cii] emission from L1630 in the Orion B molecular cloud.
Astron Astrophys. 2017 Oct;606. doi: 10.1051/0004-6361/201730881. Epub 2017 Oct 3.
8
The first CO image: I. Probing the HI/H layer around the ultracompact HII region Mon R2.
Astron Astrophys. 2016 Sep 15;593. doi: 10.1051/0004-6361/201628899.
9
Abundances of sulphur molecules in the Horsehead nebula First NS detection in a photodissociation region.
Astron Astrophys. 2019 Aug;628. doi: 10.1051/0004-6361/201935354. Epub 2019 Jul 29.

引用本文的文献

1
Expanding bubbles in Orion A: [C ] observations of M42, M43, and NGC 1977.
Astron Astrophys. 2020 Jul 1;639. doi: 10.1051/0004-6361/202037560. eCollection 2020 Jul.

本文引用的文献

2
Disruption of the Orion molecular core 1 by wind from the massive star θ Orionis C.
Nature. 2019 Jan;565(7741):618-621. doi: 10.1038/s41586-018-0844-1. Epub 2019 Jan 7.
3
Complex organic molecules in strongly UV-irradiated gas.
Astron Astrophys. 2017 Jul;603. doi: 10.1051/0004-6361/201730459.
4
Spatially resolved images of reactive ions in the Orion Bar.
Astron Astrophys. 2017 May;601. doi: 10.1051/0004-6361/201730716. Epub 2017 May 24.
5
molecular photoswitching in interstellar Space.
Astron Astrophys. 2016 Dec;596. doi: 10.1051/0004-6361/201629913. Epub 2016 Nov 22.
6
Compression and ablation of the photo-irradiated molecular cloud the Orion Bar.
Nature. 2016 Sep 8;537(7619):207-209. doi: 10.1038/nature18957. Epub 2016 Aug 10.
7
VELOCITY-RESOLVED [C ii] EMISSION AND [C ii]/FIR MAPPING ALONG ORION WITH .
Astrophys J. 2015 Oct 10;812(1). doi: 10.1088/0004-637X/812/1/75.
8
Anatomy of the photodissociation region in the orion bar.
Science. 1993 Oct 1;262(5130):86-9. doi: 10.1126/science.262.5130.86.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验