Department of Biological Sciences, The University of Memphis, 3700 Walker Avenue, Memphis, TN 38152, USA.
Department of Biological Sciences, Vanderbilt University, VU Station B, Nashville, TN Box 351634, USA.
Integr Comp Biol. 2019 Oct 1;59(4):1005-1015. doi: 10.1093/icb/icz102.
Organellar genomes are considered to be strictly uniparentally-inherited. Uniparental inheritance allows for cytonuclear coevolution and the development of highly coordinated cytonuclear interactions. Yet, instances of biparental inheritance have been documented across eukaryotes. Biparental inheritance in otherwise uniparentally-inherited organelles is termed leakage (maternal or paternal) and allows for the presence of multiple variants of the same organellar genome within an individual, called heteroplasmy. It is unclear what, if any, evolutionary consequences are placed on nuclear and/or organellar genomes due to heteroplasmy. One way of accessing cytonuclear interactions and potential coevolution is through calculating cytonuclear linkage disequilibrium (cnLD), or the non-random association of alleles between nuclear and organellar genomes. Patterns of cnLD can indicate positive or negative cytonuclear selection, coevolution between the nuclear and organellar genomes, non-traditional organellar inheritance, or instances of ancestral heteroplasmy. In plants, cytonuclear interactions have been shown to play a role in cytoplasmic male sterility which occurs in gynodioecious species and is associated with leakage. We used the gynodioecious species, Daucus carota L. spp. carota, or wild carrot, to investigate cnLD. We genotyped a total of 265 individuals from two regions of the USA at 15 nuclear microsatellites, the mitochondrial genes cox1 and atp9, and an intergenic region between trnS and trnG (StoG) in the plastid genome to calculate nuclear-nuclear LD (nucLD), cnLD, and organellar LD (i.e., within the mtDNA and between mtDNA and ptDNA) within the two regions. We were further able to identify cox1 and StoG heteroplasmy and calculate some of the same LD measures within heteroplasmic and homoplasmic (non-heteroplasmic) datasets. We used a Z-transformation test to demonstrate that heteroplasmic individuals display significantly higher levels of cnLD within both regions. In spite of this, within and between organellar LD is low to moderate. Given these patterns of LD in two regions of the USA in which gene flow has been shown to occur between crop and wild carrot, we suggest that heteroplasmy is an evolutionary mechanism which permits the maintenance of cnLD while also acting to disrupt organellar LD.
细胞器基因组被认为是严格的单亲遗传。单亲遗传允许核质协同进化和高度协调的核质相互作用的发展。然而,在真核生物中已经有双亲遗传的实例。在原本单亲遗传的细胞器中发生的双亲遗传称为渗漏(母系或父系),并允许同一个细胞器基因组的多个变体存在于个体中,称为异质性。由于异质性,对核和/或细胞器基因组产生的任何进化后果尚不清楚。一种研究核质相互作用和潜在协同进化的方法是计算核质连锁不平衡(cnLD),或核基因组和细胞器基因组之间等位基因的非随机关联。cnLD 的模式可以表明核质选择的正选择或负选择、核基因组和细胞器基因组之间的协同进化、非传统的细胞器遗传或祖先异质性的实例。在植物中,核质相互作用已被证明在细胞质雄性不育中起作用,细胞质雄性不育发生在雌雄异株物种中,并与渗漏有关。我们使用雌雄异株物种胡萝卜(Daucus carota L. spp. carota)或野胡萝卜来研究 cnLD。我们对来自美国两个地区的 265 个人进行了总共 15 个核微卫星、cox1 和 atp9 线粒体基因以及质体基因组 trnS 和 trnG 之间的间隔区(StoG)的基因分型,以计算两个区域内的核-核 LD(nucLD)、cnLD 和细胞器 LD(即 mtDNA 内和 mtDNA 与 ptDNA 之间)。我们还能够鉴定 cox1 和 StoG 异质性,并在异质性和同质性(非异质性)数据集内计算一些相同的 LD 度量。我们使用 Z 变换检验证明异质性个体在两个区域内的 cnLD 水平显著更高。尽管如此,细胞器内和细胞器间 LD 的水平较低到中等。鉴于这些 LD 模式在美国的两个地区中,已经显示出在作物和野胡萝卜之间存在基因流,我们认为异质性是一种进化机制,它允许维持 cnLD,同时也破坏细胞器 LD。