Suppr超能文献

优化混合态中自旋弛豫时间的定量分析。

Optimized quantification of spin relaxation times in the hybrid state.

机构信息

Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York.

Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York.

出版信息

Magn Reson Med. 2019 Oct;82(4):1385-1397. doi: 10.1002/mrm.27819. Epub 2019 Jun 12.

Abstract

PURPOSE

The optimization and analysis of spin ensemble trajectories in the hybrid state-a state in which the direction of the magnetization adiabatically follows the steady state while the magnitude remains in a transient state.

METHODS

Numerical optimizations were performed to find spin ensemble trajectories that minimize the Cramér-Rao bound for -encoding, -encoding, and their weighted sum, respectively, followed by a comparison between the Cramér-Rao bounds obtained with our optimized spin-trajectories, Look-Locker sequences, and multi-spin-echo methods. Finally, we experimentally tested our optimized spin trajectories with in vivo scans of the human brain.

RESULTS

After a nonrecurring inversion segment on the southern half of the Bloch sphere, all optimized spin trajectories pursue repetitive loops on the northern hemisphere in which the beginning of the first and the end of the last loop deviate from the others. The numerical results obtained in this work align well with intuitive insights gleaned directly from the governing equation. Our results suggest that hybrid-state sequences outperform traditional methods. Moreover, hybrid-state sequences that balance - and -encoding still result in near optimal signal-to-noise efficiency for each relaxation time. Thus, the second parameter can be encoded at virtually no extra cost.

CONCLUSIONS

We provided new insights into the optimal encoding processes of spin relaxation times in order to guide the design of robust and efficient pulse sequences. We found that joint acquisitions of and in the hybrid state are substantially more efficient than sequential encoding techniques.

摘要

目的

在混合态(磁化强度的方向在稳态下绝热跟随,而幅度仍处于瞬态的状态)中对自旋整体轨迹进行优化和分析。

方法

进行数值优化,以找到分别使 - 编码、 - 编码及其加权和的 Cramér-Rao 界最小的自旋整体轨迹,然后比较用我们优化的自旋轨迹、Look-Locker 序列和多自旋回波方法获得的 Cramér-Rao 界。最后,我们用人体大脑的体内扫描来实验测试我们优化的自旋轨迹。

结果

在 Bloch 球的南半球上进行了非重复的反转段后,所有优化的自旋轨迹都在北半球上进行重复的循环,其中第一个循环的开始和最后一个循环的结束与其他循环偏离。本工作中的数值结果与直接从控制方程得出的直观见解吻合良好。我们的结果表明,混合态序列优于传统方法。此外,平衡 - 和 - 编码的混合态序列仍然为每个弛豫时间提供接近最佳的信噪比效率。因此,第二个参数可以几乎不增加额外成本进行编码。

结论

我们提供了对自旋弛豫时间的最佳编码过程的新见解,以指导稳健高效的脉冲序列的设计。我们发现,在混合态中同时采集 和 要比顺序编码技术有效得多。

相似文献

1
Optimized quantification of spin relaxation times in the hybrid state.
Magn Reson Med. 2019 Oct;82(4):1385-1397. doi: 10.1002/mrm.27819. Epub 2019 Jun 12.
2
Flexible and efficient optimization of quantitative sequences using automatic differentiation of Bloch simulations.
Magn Reson Med. 2019 Oct;82(4):1438-1451. doi: 10.1002/mrm.27832. Epub 2019 May 26.
3
T and T quantification from standard turbo spin echo images.
Magn Reson Med. 2019 Mar;81(3):2052-2063. doi: 10.1002/mrm.27495. Epub 2018 Oct 19.
4
Rapid quantitative magnetization transfer imaging: Utilizing the hybrid state and the generalized Bloch model.
Magn Reson Med. 2024 Apr;91(4):1478-1497. doi: 10.1002/mrm.29951. Epub 2023 Dec 10.
6
Model-based nonlinear inverse reconstruction for T2 mapping using highly undersampled spin-echo MRI.
J Magn Reson Imaging. 2011 Aug;34(2):420-8. doi: 10.1002/jmri.22634.
7
SNR-optimized phase-sensitive dual-acquisition turbo spin echo imaging: a fast alternative to FLAIR.
Magn Reson Med. 2013 Jul;70(1):106-16. doi: 10.1002/mrm.24444. Epub 2012 Aug 13.
8
Magnetic resonance fingerprinting using echo-planar imaging: Joint quantification of T and T2∗ relaxation times.
Magn Reson Med. 2017 Nov;78(5):1724-1733. doi: 10.1002/mrm.26561. Epub 2016 Dec 16.

引用本文的文献

1
Unconstrained quantitative magnetization transfer imaging: Disentangling T of the free and semi-solid spin pools.
Imaging Neurosci (Camb). 2024 May 20;2. doi: 10.1162/imag_a_00177. eCollection 2024.
2
Mesoscopic whole-brain T *-weighted and associated quantitative MRI in healthy humans at 10.5 T.
bioRxiv. 2025 Apr 24:2025.04.21.649819. doi: 10.1101/2025.04.21.649819.
4
Cramér-Rao Bound Optimized Subspace Reconstruction in Quantitative MRI.
IEEE Trans Biomed Eng. 2025 Jan;72(1):217-226. doi: 10.1109/TBME.2024.3446763. Epub 2025 Jan 15.
5
Efficient pulse sequence design framework for high-dimensional MR fingerprinting scans using systematic error index.
Magn Reson Med. 2024 Oct;92(4):1600-1616. doi: 10.1002/mrm.30155. Epub 2024 May 9.
6
Rapid quantitative magnetization transfer imaging: Utilizing the hybrid state and the generalized Bloch model.
Magn Reson Med. 2024 Apr;91(4):1478-1497. doi: 10.1002/mrm.29951. Epub 2023 Dec 10.
10
Artificial intelligence in cardiac magnetic resonance fingerprinting.
Front Cardiovasc Med. 2022 Sep 20;9:1009131. doi: 10.3389/fcvm.2022.1009131. eCollection 2022.

本文引用的文献

1
Hybrid-state free precession in nuclear magnetic resonance.
Commun Phys. 2019;2. doi: 10.1038/s42005-019-0174-0. Epub 2019 Jun 25.
2
On the accuracy and precision of PLANET for multiparametric MRI using phase-cycled bSSFP imaging.
Magn Reson Med. 2019 Mar;81(3):1534-1552. doi: 10.1002/mrm.27491. Epub 2018 Oct 10.
3
Transverse NMR relaxation in biological tissues.
Neuroimage. 2018 Nov 15;182:149-168. doi: 10.1016/j.neuroimage.2018.06.002. Epub 2018 Jun 7.
6
Optimal experiment design for magnetic resonance fingerprinting.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:453-456. doi: 10.1109/EMBC.2016.7590737.
7
Low rank alternating direction method of multipliers reconstruction for MR fingerprinting.
Magn Reson Med. 2018 Jan;79(1):83-96. doi: 10.1002/mrm.26639. Epub 2017 Mar 5.
8
Slice profile and B corrections in 2D magnetic resonance fingerprinting.
Magn Reson Med. 2017 Nov;78(5):1781-1789. doi: 10.1002/mrm.26580. Epub 2017 Jan 11.
9
Multiparametric imaging with heterogeneous radiofrequency fields.
Nat Commun. 2016 Aug 16;7:12445. doi: 10.1038/ncomms12445.
10
Pseudo Steady-State Free Precession for MR-Fingerprinting.
Magn Reson Med. 2017 Mar;77(3):1151-1161. doi: 10.1002/mrm.26202. Epub 2016 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验