Suppr超能文献

无人机航拍图像数据集:可用于三维重建。

Unmanned aerial image dataset: Ready for 3D reconstruction.

作者信息

Shahbazi Mozhdeh, Ménard Patrick, Sohn Gunho, Théau Jérome

机构信息

Department of Geomatics Engineering, University of Calgary, Calgary, Alberta, Canada.

Centre de géomatique du Québec, Saguenay, Québec, Canada.

出版信息

Data Brief. 2019 May 24;25:103962. doi: 10.1016/j.dib.2019.103962. eCollection 2019 Aug.

Abstract

Unmanned aerial vehicles (UAVs) have become popular platforms for collecting various types of geospatial data for various mapping, monitoring and modelling applications. With the advancement of imaging and computing technologies, a vast variety of photogrammetric, computer-vision and, nowadays, end-to-end learning workflows are introduced to produce three-dimensional (3D) information in form of digital surface and terrain models, textured meshes, rectified mosaics, CAD models, etc. These 3D products might be used in applications where accuracy and precision play a vital role, e.g. structural health monitoring. Therefore, extensive tests against data with relevant characteristics and reliable ground-truth are required to assess and ensure the performance of 3D modelling workflows. This article describes the images collected by a customized unmanned aerial vehicle (UAV) system from an open-pit gravel mine accompanied with additional data that will allow implementing and evaluating any structure-from-motion or photogrammetric approach for sparse or dense 3D reconstruction. This dataset includes total of 158 high-quality images captured with more than 80% endlap and spatial resolution higher than 1.5 cm, the 3D coordinates of 109 ground control points and checkpoints, 2D coordinates of more than 40K corresponding points among the images, a subset of 25 multi-view stereo images selected from an area of approximately 30 m × 40 m within the scene accompanied with a dense point cloud measured by a terrestrial laser scanner.

摘要

无人机已成为用于收集各类地理空间数据的热门平台,可用于各种测绘、监测和建模应用。随着成像和计算技术的进步,人们引入了各种各样的摄影测量、计算机视觉以及如今的端到端学习工作流程,以生成数字表面模型、地形模型、纹理网格、校正镶嵌图、CAD模型等形式的三维(3D)信息。这些3D产品可能会用于精度和准确性至关重要的应用中,例如结构健康监测。因此,需要针对具有相关特征的数据和可靠的地面真值进行广泛测试,以评估和确保3D建模工作流程的性能。本文描述了由定制无人机(UAV)系统从露天砾石矿收集的图像,以及其他数据,这些数据将允许实施和评估任何用于稀疏或密集3D重建的运动恢复结构或摄影测量方法。该数据集总共包括158张高质量图像,重叠率超过80%,空间分辨率高于1.5厘米,109个地面控制点和检查点的3D坐标,图像中40000多个对应点的2D坐标,从场景中约30米×40米区域中选取的25张多视图立体图像子集,以及由地面激光扫描仪测量的密集点云。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9205/6554229/65fcc5caab64/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验