University of Aveiro, DETI/IEETA, Campus Universitário de Santiago, Aveiro, Portugal.
Department of Information and Communications Technologies, University of A Coruña, A Coruña, Spain.
J Digit Imaging. 2019 Oct;32(5):870-879. doi: 10.1007/s10278-019-00184-5.
In the last decades, the amount of medical imaging studies and associated metadata has been rapidly increasing. Despite being mostly used for supporting medical diagnosis and treatment, many recent initiatives claim the use of medical imaging studies in clinical research scenarios but also to improve the business practices of medical institutions. However, the continuous production of medical imaging studies coupled with the tremendous amount of associated data, makes the real-time analysis of medical imaging repositories difficult using conventional tools and methodologies. Those archives contain not only the image data itself but also a wide range of valuable metadata describing all the stakeholders involved in the examination. The exploration of such technologies will increase the efficiency and quality of medical practice. In major centers, it represents a big data scenario where Business Intelligence (BI) and Data Analytics (DA) are rare and implemented through data warehousing approaches. This article proposes an Extract, Transform, Load (ETL) framework for medical imaging repositories able to feed, in real-time, a developed BI (Business Intelligence) application. The solution was designed to provide the necessary environment for leading research on top of live institutional repositories without requesting the creation of a data warehouse. It features an extensible dashboard with customizable charts and reports, with an intuitive web-based interface that empowers the usage of novel data mining techniques, namely, a variety of data cleansing tools, filters, and clustering functions. Therefore, the user is not required to master the programming skills commonly needed for data analysts and scientists, such as Python and R.
在过去的几十年中,医学影像研究及其相关元数据的数量迅速增加。尽管这些研究主要用于支持医学诊断和治疗,但最近的许多举措都声称在临床研究场景中使用医学影像研究,也用于改善医疗机构的业务实践。然而,由于医学影像研究的持续产生以及与之相关的数据量巨大,使用传统工具和方法实时分析医学影像存储库变得非常困难。这些档案不仅包含图像数据本身,还包含描述检查中所有利益相关者的广泛有价值的元数据。探索这些技术将提高医学实践的效率和质量。在主要中心,它代表了一个大数据场景,其中商业智能(BI)和数据分析(DA)很少见,并且通过数据仓库方法来实现。本文提出了一个用于医学影像存储库的提取、转换、加载(ETL)框架,能够实时为开发的 BI(商业智能)应用程序提供数据。该解决方案旨在为在机构存储库上进行领先的研究提供必要的环境,而无需请求创建数据仓库。它具有一个可扩展的仪表板,带有可定制的图表和报告,具有直观的基于 Web 的界面,支持使用新颖的数据挖掘技术,即各种数据清理工具、过滤器和聚类功能。因此,用户无需掌握数据分析员和科学家通常需要的编程技能,如 Python 和 R。