Suppr超能文献

探讨帕金森病相关的氧化还原靶点:CRISPR 编辑的潜在应用。

Interrogating Parkinson's disease associated redox targets: Potential application of CRISPR editing.

机构信息

Department of Advanced Biomaterials, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Russian Federation.

Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, USA.

出版信息

Free Radic Biol Med. 2019 Nov 20;144:279-292. doi: 10.1016/j.freeradbiomed.2019.06.007. Epub 2019 Jun 12.

Abstract

Loss of dopaminergic neurons in the substantia nigra is one of the pathogenic hallmarks of Parkinson's disease, yet the underlying molecular mechanisms remain enigmatic. While aberrant redox metabolism strongly associated with iron dysregulation and accumulation of dysfunctional mitochondria is considered as one of the major contributors to neurodegeneration and death of dopaminergic cells, the specific anomalies in the molecular machinery and pathways leading to the PD development and progression have not been identified. The high efficiency and relative simplicity of a new genome editing tool, CRISPR/Cas9, make its applications attractive for deciphering molecular changes driving PD-related impairments of redox metabolism and lipid peroxidation in relation to mishandling of iron, aggregation and oligomerization of alpha-synuclein and mitochondrial injury as well as in mechanisms of mitophagy and programs of regulated cell death (apoptosis and ferroptosis). These insights into the mechanisms of PD pathology may be used for the identification of new targets for therapeutic interventions and innovative approaches to genome editing, including CRISPR/Cas9.

摘要

黑质中多巴胺能神经元的丧失是帕金森病的发病特征之一,但潜在的分子机制仍然很神秘。虽然异常的氧化还原代谢与铁失调和功能失调的线粒体积累强烈相关,被认为是导致多巴胺能细胞神经退行性变和死亡的主要因素之一,但导致 PD 发展和进展的分子机制和途径的具体异常尚未确定。新的基因组编辑工具 CRISPR/Cas9 的高效率和相对简单性使其在解码驱动 PD 相关氧化还原代谢和脂质过氧化的分子变化方面的应用具有吸引力,这些变化与铁的处理不当、α-突触核蛋白的聚集和寡聚化以及线粒体损伤以及细胞死亡的调控机制(细胞凋亡和铁死亡)有关。对 PD 病理学机制的这些了解可用于鉴定新的治疗干预靶点和基因组编辑的创新方法,包括 CRISPR/Cas9。

相似文献

1
Interrogating Parkinson's disease associated redox targets: Potential application of CRISPR editing.
Free Radic Biol Med. 2019 Nov 20;144:279-292. doi: 10.1016/j.freeradbiomed.2019.06.007. Epub 2019 Jun 12.
6
Ferroptosis in Parkinson's disease: Molecular mechanisms and therapeutic potential.
Ageing Res Rev. 2023 Nov;91:102077. doi: 10.1016/j.arr.2023.102077. Epub 2023 Sep 24.
7
The role of oxidative stress in Parkinson's disease.
J Parkinsons Dis. 2013;3(4):461-91. doi: 10.3233/JPD-130230.
8
Mitochondrial iron dyshomeostasis and its potential as a therapeutic target for Parkinson's disease.
Exp Neurol. 2024 Feb;372:114614. doi: 10.1016/j.expneurol.2023.114614. Epub 2023 Nov 23.
10
The involvement of IRP2-induced ferroptosis through the p53-SLC7A11-ALOX12 pathway in Parkinson's disease.
Free Radic Biol Med. 2024 Sep;222:386-396. doi: 10.1016/j.freeradbiomed.2024.06.020. Epub 2024 Jun 25.

引用本文的文献

1
The crosstalk between mitochondrial quality control and metal-dependent cell death.
Cell Death Dis. 2024 Apr 27;15(4):299. doi: 10.1038/s41419-024-06691-w.
2
The Interplay of Mitochondrial Bioenergetics and Dopamine Agonists as an Effective Disease-Modifying Therapy for Parkinson's Disease.
Mol Neurobiol. 2024 Oct;61(10):8086-8103. doi: 10.1007/s12035-024-04078-8. Epub 2024 Mar 11.
3
The Role of Cellular Defense Systems of Ferroptosis in Parkinson's Disease and Alzheimer's Disease.
Int J Mol Sci. 2023 Sep 14;24(18):14108. doi: 10.3390/ijms241814108.
4
Molecular Mechanism of Ferroptosis in Orthopedic Diseases.
Cells. 2022 Sep 24;11(19):2979. doi: 10.3390/cells11192979.
5
PCBP-1 Regulates the Transcription and Alternative Splicing of Inflammation and Ubiquitination-Related Genes in PC12 Cell.
Front Aging Neurosci. 2022 Jun 20;14:884837. doi: 10.3389/fnagi.2022.884837. eCollection 2022.
8
SARS-CoV2 infectivity is potentially modulated by host redox status.
Comput Struct Biotechnol J. 2020;18:3705-3711. doi: 10.1016/j.csbj.2020.11.016. Epub 2020 Nov 20.
9
Covalent Bridging of Corilagin Improves Antiferroptosis Activity: Comparison with 1,3,6-Tri--galloyl-β-d-glucopyranose.
ACS Med Chem Lett. 2020 Oct 5;11(11):2232-2237. doi: 10.1021/acsmedchemlett.0c00359. eCollection 2020 Nov 12.

本文引用的文献

1
PINK1 Interacts with VCP/p97 and Activates PKA to Promote NSFL1C/p47 Phosphorylation and Dendritic Arborization in Neurons.
eNeuro. 2018 Jan 10;5(6). doi: 10.1523/ENEURO.0466-18.2018. eCollection 2018 Nov-Dec.
2
CRISPR/Cas9-mediated PINK1 deletion leads to neurodegeneration in rhesus monkeys.
Cell Res. 2019 Apr;29(4):334-336. doi: 10.1038/s41422-019-0142-y. Epub 2019 Feb 15.
3
Patient-Specific iPSC-Derived Astrocytes Contribute to Non-Cell-Autonomous Neurodegeneration in Parkinson's Disease.
Stem Cell Reports. 2019 Feb 12;12(2):213-229. doi: 10.1016/j.stemcr.2018.12.011. Epub 2019 Jan 10.
4
Comprehensive functional genomic resource and integrative model for the human brain.
Science. 2018 Dec 14;362(6420). doi: 10.1126/science.aat8464.
5
Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder.
Science. 2018 Dec 14;362(6420). doi: 10.1126/science.aat8127.
8
Striking while the iron is hot: Iron metabolism and ferroptosis in neurodegeneration.
Free Radic Biol Med. 2019 Mar;133:221-233. doi: 10.1016/j.freeradbiomed.2018.09.033. Epub 2018 Sep 25.
9
Downregulation of SNCA Expression by Targeted Editing of DNA Methylation: A Potential Strategy for Precision Therapy in PD.
Mol Ther. 2018 Nov 7;26(11):2638-2649. doi: 10.1016/j.ymthe.2018.08.019. Epub 2018 Aug 29.
10
Microglia in neurodegeneration.
Nat Neurosci. 2018 Oct;21(10):1359-1369. doi: 10.1038/s41593-018-0242-x. Epub 2018 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验