Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States.
Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States.
Biochem Biophys Res Commun. 2019 Aug 20;516(2):333-338. doi: 10.1016/j.bbrc.2019.06.034. Epub 2019 Jun 14.
Herein we report the first structure of topoisomerase I determined from the gram-positive bacterium, S. mutans. Bacterial topoisomerase I is an ATP-independent type 1A topoisomerase that uses the inherent torsional strain within hyper-negatively supercoiled DNA as an energy source for its critical function of DNA relaxation. Interest in the enzyme has gained momentum as it has proven to be essential in various bacterial organisms. In order to aid in further biochemical characterization, the apo 65-kDa amino-terminal fragment of DNA topoisomerase I from the gram-positive model organism Streptococcus mutans was crystalized and a three-dimensional structure was determined to 2.06 Å resolution via x-ray crystallography. The overall structure illustrates the four classic major domains that create the traditional topoisomerase I "lock" formation comprised of a sizable toroidal aperture atop what is considered to be a highly dynamic body. A catalytic tyrosine residue resides at the interface between two domains and is known to form a 5' phosphotyrosine DNA-enzyme intermediate during transient single-stranded cleavage required for enzymatic relaxation of hyper negative DNA supercoils. Surrounding the catalytic tyrosine residue is the remainder of the highly conserved active site. Within 5 Å from the catalytic center, only one dissimilar residue is observed between topoisomerase I from S. mutans and the gram-negative model organism E. coli. Immediately adjacent to the conserved active site, however, S. mutans topoisomerase I displays a somewhat unique nine residue loop extension not present in any bacterial topoisomerase I structures previously determined other than that of an extremophile.
在这里,我们报告了第一个从革兰氏阳性菌,变形链球菌中确定的拓扑异构酶 I 的结构。细菌拓扑异构酶 I 是一种 ATP 非依赖性的 1A 拓扑异构酶,它利用超负超螺旋 DNA 中的固有扭转应变作为其关键的 DNA 松弛功能的能量来源。由于它被证明在各种细菌生物中是必不可少的,因此人们对该酶的兴趣日益增加。为了进一步帮助生化特性分析,我们对来自革兰氏阳性模式生物变形链球菌的 DNA 拓扑异构酶 I 的无辅因子 65 kDa 氨基末端片段进行了结晶,并通过 X 射线晶体学确定了其三维结构,分辨率为 2.06 Å。整体结构说明了四个经典的主要结构域,这些结构域构成了传统拓扑异构酶 I 的“锁”形成,在被认为是高度动态的主体之上形成了一个相当大的环形孔。一个催化酪氨酸残基位于两个结构域的界面处,已知在需要酶促松弛超负 DNA 超螺旋的短暂单链切割过程中,形成 5'磷酸酪氨酸 DNA-酶中间物。催化酪氨酸残基周围是高度保守的活性位点的其余部分。在催化中心的 5 Å 范围内,在来自 S. mutans 和革兰氏阴性模式生物 E. coli 的拓扑异构酶 I 之间只观察到一个不同的残基。然而,紧邻保守活性位点,S. mutans 拓扑异构酶 I 显示出一个有点独特的九残基环延伸,在以前确定的任何细菌拓扑异构酶 I 结构中都没有,除了一种极端微生物的结构。