Suppr超能文献

一个不断发展的两个相互作用的 RNA 故事——T 框核酶开关机制的主题和变化。

An evolving tale of two interacting RNAs-themes and variations of the T-box riboswitch mechanism.

机构信息

Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.

出版信息

IUBMB Life. 2019 Aug;71(8):1167-1180. doi: 10.1002/iub.2098. Epub 2019 Jun 17.

Abstract

T-box riboswitches are a widespread class of structured noncoding RNAs in Gram-positive bacteria that regulate the expression of amino acid-related genes. They form negative feedback loops to maintain steady supplies of aminoacyl-transfer RNAs (tRNAs) to the translating ribosomes. T-box riboswitches are located in the 5' leader regions of mRNAs that they regulate and directly bind to their cognate tRNA ligands. T-boxes further sense the aminoacylation state of the bound tRNAs and, based on this readout, regulate gene expression at the level of transcription or translation. T-box riboswitches consist of two conserved domains-a 5' Stem I domain that is involved in specific tRNA recognition and a 3' antiterminator/antisequestrator (or discriminator) domain that senses the amino acid on the 3' end of the bound tRNA. Interaction of the 3' end of an uncharged but not charged tRNA with a thermodynamically weak discriminator domain stabilizes it to promote transcription readthrough or translation initiation. Recent biochemical, biophysical, and structural studies have provided high-resolution insights into the mechanism of tRNA recognition by Stem I, several structural models of full-length T-box-tRNA complexes, mechanism of amino acid sensing by the antiterminator domain, as well as kinetic details of tRNA binding to the T-box riboswitches. In addition, translation-regulating T-box riboswitches have been recently characterized, which presented key differences from the canonical transcriptional T-boxes. Here, we review the recent developments in understanding the T-box riboswitch mechanism that have employed various complementary approaches. Further, the regulation of multiple essential genes by T-boxes makes them very attractive drug targets to combat drug resistance. The recent progress in understanding the biochemical, structural, and dynamic aspects of the T-box riboswitch mechanism will enable more precise and effective targeting with small molecules. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1167-1180, 2019.

摘要

T 盒核糖体开关是革兰氏阳性细菌中广泛存在的一类结构非编码 RNA,可调节与氨基酸相关的基因表达。它们形成负反馈回路,以维持氨酰基转移 RNA(tRNA)向翻译核糖体的稳定供应。T 盒核糖体开关位于它们调节的 mRNA 的 5' 前导区,并直接与它们的同源 tRNA 配体结合。T 盒进一步感知结合 tRNA 的氨酰化状态,并根据该读数在转录或翻译水平上调节基因表达。T 盒核糖体开关由两个保守结构域组成 - 涉及特定 tRNA 识别的 5' Stem I 结构域和 3' 终止子/隔离子(或鉴别器)结构域,它感知结合 tRNA 3' 末端的氨基酸。未被负载但未被负载的 tRNA 的 3' 末端与热力学上较弱的鉴别器结构域的相互作用稳定了它,以促进转录通读或翻译起始。最近的生化、生物物理和结构研究为 Stem I 识别 tRNA 的机制、全长 T 盒-tRNA 复合物的几个结构模型、终止子结构域对氨基酸的感应机制以及 tRNA 与 T 盒核糖体开关结合的动力学细节提供了高分辨率的见解。此外,最近还对翻译调节 T 盒核糖体开关进行了表征,这与典型的转录 T 盒有很大的不同。在这里,我们回顾了近年来在理解 T 盒核糖体开关机制方面的最新进展,这些进展采用了各种互补的方法。此外,T 盒对多个必需基因的调节使它们成为对抗耐药性的极具吸引力的药物靶点。对 T 盒核糖体开关机制的生化、结构和动态方面的理解的最新进展将使小分子的靶向更精确和有效。

相似文献

1
An evolving tale of two interacting RNAs-themes and variations of the T-box riboswitch mechanism.
IUBMB Life. 2019 Aug;71(8):1167-1180. doi: 10.1002/iub.2098. Epub 2019 Jun 17.
2
Solution structure of the K-turn and Specifier Loop domains from the Bacillus subtilis tyrS T-box leader RNA.
J Mol Biol. 2011 Apr 22;408(1):99-117. doi: 10.1016/j.jmb.2011.02.014. Epub 2011 Feb 17.
3
Hierarchical mechanism of amino acid sensing by the T-box riboswitch.
Nat Commun. 2018 May 14;9(1):1896. doi: 10.1038/s41467-018-04305-6.
4
Structural basis of amino acid surveillance by higher-order tRNA-mRNA interactions.
Nat Struct Mol Biol. 2019 Dec;26(12):1094-1105. doi: 10.1038/s41594-019-0326-7. Epub 2019 Nov 18.
5
Co-crystal structure of a T-box riboswitch stem I domain in complex with its cognate tRNA.
Nature. 2013 Aug 15;500(7462):363-6. doi: 10.1038/nature12440. Epub 2013 Jul 28.
6
Structural idiosyncrasies of glycyl T-box riboswitches among pathogenic bacteria.
RNA. 2024 Sep 16;30(10):1328-1344. doi: 10.1261/rna.080071.124.
7
Capture and Release of tRNA by the T-Loop Receptor in the Function of the T-Box Riboswitch.
Biochemistry. 2017 Jul 18;56(28):3549-3558. doi: 10.1021/acs.biochem.7b00284. Epub 2017 Jul 3.
8
Direct evaluation of tRNA aminoacylation status by the T-box riboswitch using tRNA-mRNA stacking and steric readout.
Mol Cell. 2014 Jul 3;55(1):148-55. doi: 10.1016/j.molcel.2014.05.017. Epub 2014 Jun 19.
9
Unboxing the T-box riboswitches-A glimpse into multivalent and multimodal RNA-RNA interactions.
Wiley Interdiscip Rev RNA. 2020 Nov;11(6):e1600. doi: 10.1002/wrna.1600. Epub 2020 Jul 6.
10
New tRNA contacts facilitate ligand binding in a T box riboswitch.
Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):3894-3899. doi: 10.1073/pnas.1721254115. Epub 2018 Mar 26.

引用本文的文献

1
Translational T-box riboswitches bind tRNA by modulating conformational flexibility.
Nat Commun. 2024 Aug 3;15(1):6592. doi: 10.1038/s41467-024-50885-x.
2
Structural idiosyncrasies of glycyl T-box riboswitches among pathogenic bacteria.
RNA. 2024 Sep 16;30(10):1328-1344. doi: 10.1261/rna.080071.124.
3
Recognition of the tRNA structure: Everything everywhere but not all at once.
Cell Chem Biol. 2024 Jan 18;31(1):36-52. doi: 10.1016/j.chembiol.2023.12.008. Epub 2023 Dec 29.
5
Direct observation of tRNA-chaperoned folding of a dynamic mRNA ensemble.
Nat Commun. 2023 Sep 6;14(1):5438. doi: 10.1038/s41467-023-41155-3.
6
Cooperativity and Interdependency between RNA Structure and RNA-RNA Interactions.
Noncoding RNA. 2021 Dec 15;7(4):81. doi: 10.3390/ncrna7040081.
7
Improving RNA Crystal Diffraction Quality by Postcrystallization Treatment.
Methods Mol Biol. 2021;2323:25-37. doi: 10.1007/978-1-0716-1499-0_3.
10
RNA drug discovery: Conformational restriction enhances specific modulation of the T-box riboswitch function.
Bioorg Med Chem. 2020 Oct 15;28(20):115696. doi: 10.1016/j.bmc.2020.115696. Epub 2020 Aug 6.

本文引用的文献

1
Discovery of Small-Molecule Antibiotics against a Unique tRNA-Mediated Regulation of Transcription in Gram-Positive Bacteria.
ChemMedChem. 2019 Apr 3;14(7):758-769. doi: 10.1002/cmdc.201800744. Epub 2019 Mar 1.
3
The T-Box Riboswitch: tRNA as an Effector to Modulate Gene Regulation.
Microbiol Spectr. 2018 Jul;6(4). doi: 10.1128/microbiolspec.RWR-0028-2018.
4
Principles for targeting RNA with drug-like small molecules.
Nat Rev Drug Discov. 2018 Aug;17(8):547-558. doi: 10.1038/nrd.2018.93. Epub 2018 Jul 6.
5
Hierarchical mechanism of amino acid sensing by the T-box riboswitch.
Nat Commun. 2018 May 14;9(1):1896. doi: 10.1038/s41467-018-04305-6.
6
New tRNA contacts facilitate ligand binding in a T box riboswitch.
Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):3894-3899. doi: 10.1073/pnas.1721254115. Epub 2018 Mar 26.
7
Direct modulation of T-box riboswitch-controlled transcription by protein synthesis inhibitors.
Nucleic Acids Res. 2017 Sep 29;45(17):10242-10258. doi: 10.1093/nar/gkx663.
8
Capture and Release of tRNA by the T-Loop Receptor in the Function of the T-Box Riboswitch.
Biochemistry. 2017 Jul 18;56(28):3549-3558. doi: 10.1021/acs.biochem.7b00284. Epub 2017 Jul 3.
9
Molecular envelope and atomic model of an anti-terminated glyQS T-box regulator in complex with tRNAGly.
Nucleic Acids Res. 2017 Jul 27;45(13):8079-8090. doi: 10.1093/nar/gkx451.
10
tRNA Modifications: Impact on Structure and Thermal Adaptation.
Biomolecules. 2017 Apr 4;7(2):35. doi: 10.3390/biom7020035.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验