Suppr超能文献

前言:用于准确预测无细胞胎儿 DNA 分数的计算流程。

PREFACE: In silico pipeline for accurate cell-free fetal DNA fraction prediction.

机构信息

Department of Pathology, Ghent University, Ghent University Hospital, Ghent, Belgium.

Center for Medical Genetics, Ghent University, Ghent University Hospital, Ghent, Belgium.

出版信息

Prenat Diagn. 2019 Sep;39(10):925-933. doi: 10.1002/pd.5508. Epub 2019 Jul 11.

Abstract

OBJECTIVE

During routine noninvasive prenatal testing (NIPT), cell-free fetal DNA fraction is ideally derived from shallow-depth whole-genome sequencing data, preventing the need for additional experimental assays. The fraction of aligned reads to chromosome Y enables proper quantification for male fetuses, unlike for females, where advanced predictive procedures are required. This study introduces PREdict FetAl ComponEnt (PREFACE), a novel bioinformatics pipeline to establish fetal fraction in a gender-independent manner.

METHODS

PREFACE combines the strengths of principal component analysis and neural networks to model copy number profiles.

RESULTS

For sets of roughly 1100 male NIPT samples, a cross-validated Pearson correlation of 0.9 between predictions and fetal fractions according to Y chromosomal read counts was noted. PREFACE enables training with both male and unlabeled female fetuses. Using our complete cohort (n = 2468, n = 2723), the correlation metric reached 0.94.

CONCLUSIONS

Allowing individual institutions to generate optimized models sidelines between-laboratory bias, as PREFACE enables user-friendly training with a limited amount of retrospective data. In addition, our software provides the fetal fraction based on the copy number state of chromosome X. We show that these measures can predict mixed multiple pregnancies, sex chromosomal aneuploidies, and the source of observed aberrations.

摘要

目的

在常规的无创产前检测(NIPT)中,游离胎儿 DNA 片段最好来自浅层全基因组测序数据,从而避免额外的实验检测。与女性不同,男性胎儿的染色体 Y 对齐读数的比例可以进行适当的定量,而女性则需要更先进的预测程序。本研究介绍了一种新的生物信息学管道 PREdict FetAl ComponEnt(PREFACE),可以以性别无关的方式建立胎儿片段。

方法

PREFACE 结合了主成分分析和神经网络的优势来模拟拷贝数谱。

结果

对于大约 1100 个男性 NIPT 样本集,根据 Y 染色体读取计数预测的胎儿分数与实际胎儿分数之间的交叉验证 Pearson 相关系数为 0.9。PREFACE 可以同时使用男性和未标记的女性胎儿进行训练。使用我们的完整队列(n = 2468,n = 2723),相关度量达到了 0.94。

结论

允许各个机构生成优化模型可以消除实验室之间的偏差,因为 PREFACE 允许用户使用有限的回顾性数据进行友好的训练。此外,我们的软件还提供了基于染色体 X 拷贝数状态的胎儿分数。我们表明,这些措施可以预测混合性多胎妊娠、性染色体非整倍体和观察到的异常的来源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f443/6771918/5ad954b3a886/PD-39-925-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验