Suppr超能文献

年龄依赖性改变在小鼠和人类耳蜗神经嵴衍生细胞 Kir4.1 表达。

Age-dependent alterations of Kir4.1 expression in neural crest-derived cells of the mouse and human cochlea.

机构信息

Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China.

Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Department of Otolaryngology, Tinnitus and Hyperacusis Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.

出版信息

Neurobiol Aging. 2019 Aug;80:210-222. doi: 10.1016/j.neurobiolaging.2019.04.009. Epub 2019 Apr 18.

Abstract

Age-related hearing loss (or presbyacusis) is a progressive pathophysiological process. This study addressed the hypothesis that degeneration/dysfunction of multiple nonsensory cell types contributes to presbyacusis by evaluating tissues obtained from young and aged CBA/CaJ mouse ears and human temporal bones. Ultrastructural examination and transcriptomic analysis of mouse cochleas revealed age-dependent pathophysiological alterations in 3 types of neural crest-derived cells, namely intermediate cells in the stria vascularis, outer sulcus cells in the cochlear lateral wall, and satellite cells in the spiral ganglion. A significant decline in immunoreactivity for Kir4.1, an inwardly rectifying potassium channel, was seen in strial intermediate cells and outer sulcus cells in the ears of older mice. Age-dependent alterations in Kir4.1 immunostaining also were observed in satellite cells ensheathing spiral ganglion neurons. Expression alterations of Kir4.1 were observed in these same cell populations in the aged human cochlea. These results suggest that degeneration/dysfunction of neural crest-derived cells maybe an important contributing factor to both metabolic and neural forms of presbyacusis.

摘要

年龄相关性听力损失(或老年性聋)是一种进行性的病理生理过程。本研究通过评估从小鼠和人颞骨获得的组织,验证了以下假设,即多种非感觉细胞类型的退化/功能障碍导致了老年性聋。对小鼠耳蜗的超微结构检查和转录组分析显示,3 种神经嵴衍生细胞(血管纹中的中间细胞、耳蜗外侧壁的外嵴细胞和螺旋神经节中的卫星细胞)存在年龄依赖性的病理生理改变。在老年小鼠的耳中,观察到内向整流钾通道 Kir4.1 在纹状中间细胞和外嵴细胞中的免疫反应显著下降。在螺旋神经节神经元包绕的卫星细胞中也观察到 Kir4.1 免疫染色的年龄依赖性改变。在老化的人耳蜗中,也观察到这些相同细胞群中 Kir4.1 的表达改变。这些结果表明,神经嵴衍生细胞的退化/功能障碍可能是代谢性和神经性老年性聋的一个重要致病因素。

相似文献

1
Age-dependent alterations of Kir4.1 expression in neural crest-derived cells of the mouse and human cochlea.
Neurobiol Aging. 2019 Aug;80:210-222. doi: 10.1016/j.neurobiolaging.2019.04.009. Epub 2019 Apr 18.
2
Sox10 expressing cells in the lateral wall of the aged mouse and human cochlea.
PLoS One. 2014 Jun 2;9(6):e97389. doi: 10.1371/journal.pone.0097389. eCollection 2014.
3
The Stria Vascularis in Mice and Humans Is an Early Site of Age-Related Cochlear Degeneration, Macrophage Dysfunction, and Inflammation.
J Neurosci. 2023 Jul 5;43(27):5057-5075. doi: 10.1523/JNEUROSCI.2234-22.2023. Epub 2023 Jun 2.
5
The role of an inwardly rectifying K(+) channel (Kir4.1) in the inner ear and hearing loss.
Neuroscience. 2014 Apr 18;265:137-46. doi: 10.1016/j.neuroscience.2014.01.036. Epub 2014 Jan 28.
6
Time course of inner ear degeneration and deafness in mice lacking the Kir4.1 potassium channel subunit.
Hear Res. 2003 Mar;177(1-2):71-80. doi: 10.1016/s0378-5955(02)00799-2.
8
The aging cochlea: Towards unraveling the functional contributions of strial dysfunction and synaptopathy.
Hear Res. 2019 May;376:111-124. doi: 10.1016/j.heares.2019.02.015. Epub 2019 Mar 2.
10

引用本文的文献

1
Pathophysiological insights and therapeutic developments in age-related hearing loss: a narrative review.
Front Aging Neurosci. 2025 Aug 20;17:1657603. doi: 10.3389/fnagi.2025.1657603. eCollection 2025.
2
Presbycusis: Pathology, Signal Pathways, and Therapeutic Strategy.
Adv Sci (Weinh). 2025 Aug;12(29):e2410413. doi: 10.1002/advs.202410413. Epub 2025 May 11.
4
The Stria Vascularis: Renewed Attention on a Key Player in Age-Related Hearing Loss.
Int J Mol Sci. 2024 May 15;25(10):5391. doi: 10.3390/ijms25105391.
6
Loss of Pax3 causes reduction of melanocytes in the developing mouse cochlea.
Sci Rep. 2024 Jan 26;14(1):2210. doi: 10.1038/s41598-024-52629-9.
7
Complement factor B is essential for the proper function of the peripheral auditory system.
Front Neurol. 2023 Jul 25;14:1214408. doi: 10.3389/fneur.2023.1214408. eCollection 2023.
8
The Stria Vascularis in Mice and Humans Is an Early Site of Age-Related Cochlear Degeneration, Macrophage Dysfunction, and Inflammation.
J Neurosci. 2023 Jul 5;43(27):5057-5075. doi: 10.1523/JNEUROSCI.2234-22.2023. Epub 2023 Jun 2.
9
Peripheral Auditory Nerve Impairment in a Mouse Model of Syndromic Autism.
J Neurosci. 2022 Oct 19;42(42):8002-8018. doi: 10.1523/JNEUROSCI.0253-22.2022. Epub 2022 Sep 30.
10
AAV8BP2 and AAV8 transduce the mammalian cochlear lateral wall and endolymphatic sac with high efficiency.
Mol Ther Methods Clin Dev. 2022 Jul 31;26:371-383. doi: 10.1016/j.omtm.2022.07.013. eCollection 2022 Sep 8.

本文引用的文献

1
An Overview of the Role of Lipofuscin in Age-Related Neurodegeneration.
Front Neurosci. 2018 Jul 5;12:464. doi: 10.3389/fnins.2018.00464. eCollection 2018.
2
It's All about Timing: The Involvement of Kir4.1 Channel Regulation in Acute Ischemic Stroke Pathology.
Front Cell Neurosci. 2018 Feb 16;12:36. doi: 10.3389/fncel.2018.00036. eCollection 2018.
3
Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression.
Nature. 2018 Feb 14;554(7692):323-327. doi: 10.1038/nature25752.
4
Noise-Induced Dysregulation of RNA Binding Proteins Contributes to Auditory Nerve Demyelination and Hearing Loss.
J Neurosci. 2018 Mar 7;38(10):2551-2568. doi: 10.1523/JNEUROSCI.2487-17.2018. Epub 2018 Feb 6.
5
WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research.
Nucleic Acids Res. 2018 Jan 4;46(D1):D661-D667. doi: 10.1093/nar/gkx1064.
7
Expansion of the Gene Ontology knowledgebase and resources.
Nucleic Acids Res. 2017 Jan 4;45(D1):D331-D338. doi: 10.1093/nar/gkw1108. Epub 2016 Nov 29.
8
The role of glial-specific Kir4.1 in normal and pathological states of the CNS.
Acta Neuropathol. 2016 Jul;132(1):1-21. doi: 10.1007/s00401-016-1553-1. Epub 2016 Mar 9.
10
Update on the implication of potassium channels in autism: K(+) channelautism spectrum disorder.
Front Cell Neurosci. 2015 Mar 2;9:34. doi: 10.3389/fncel.2015.00034. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验