Bandy B, Davison A J
Bioenergetics Research Laboratory, School of Kinesiology, Faculty of Applied Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
Arch Biochem Biophys. 1987 Dec;259(2):305-15. doi: 10.1016/0003-9861(87)90497-8.
Transition metal ions and superoxide participate in different autoxidations to a variable extent. In the reaction of 6-hydroxydopamine (6-OHDA) with oxygen at pH 7.0 or 8.0, addition of 5 to 300 U/ml superoxide dismutase inhibited autoxidation by up to 96% at the highest concentrations. Superoxide dismutase at concentrations of 5-20 U/ml inhibited by less than 40% when present alone, but inhibited by over 99% in the presence of desferrioxamine or histidine. EDTA also enhanced the inhibition by 20 U/ml superoxide dismutase to 86%, even though EDTA accelerated the autoxidation of 6-OHDA when present alone or with desferrioxamine. In contrast, other ligands, such as ADP or phytic acid, had little or no effect on inhibition by superoxide dismutase. Proteins such as albumin, cytochrome oxidase, or denatured superoxide dismutase also enhanced inhibition by active superoxide dismutase from less than 40% to over 90%. Evidently, in the presence of redox active metals, autoxidation occurs by inner sphere electron transfer, presumably within a ternary 6-OHDA.metal.oxygen complex. This mechanism does not involve free O2-. and is not inhibited by superoxide dismutase. On the other hand, the presence of certain ligands (including proteins) diminishes the ability of trace metals to exchange electrons with 6-OHDA or oxygen by an inner sphere mechanism. These ligands render autoxidation dependent on propagation by O2-. and therefore inhibitable by superoxide dismutase. Previously conflicting reports that superoxide dismutase alone inhibits 6-OHDA autoxidation are thus explicable on the basis that at sufficient concentration the apoprotein coordinates trace metals in such a way to preclude inner sphere metal catalysis.
过渡金属离子和超氧化物在不同的自氧化反应中参与程度各不相同。在pH 7.0或8.0条件下6-羟基多巴胺(6-OHDA)与氧气的反应中,添加5至300 U/ml的超氧化物歧化酶在最高浓度时可将自氧化抑制高达96%。单独存在时,浓度为5 - 20 U/ml的超氧化物歧化酶抑制率小于40%,但在去铁胺或组氨酸存在时抑制率超过99%。EDTA也将20 U/ml超氧化物歧化酶的抑制率提高到86%,尽管单独存在或与去铁胺一起存在时EDTA会加速6-OHDA的自氧化。相比之下,其他配体,如ADP或植酸,对超氧化物歧化酶的抑制作用很小或没有影响。诸如白蛋白、细胞色素氧化酶或变性超氧化物歧化酶等蛋白质也将活性超氧化物歧化酶的抑制率从小于40%提高到超过90%。显然,在氧化还原活性金属存在的情况下,自氧化通过内球电子转移发生,推测是在三元6-OHDA·金属·氧络合物内。这种机制不涉及游离的O2-,并且不受超氧化物歧化酶抑制。另一方面,某些配体(包括蛋白质)的存在会降低痕量金属通过内球机制与6-OHDA或氧气交换电子的能力。这些配体使自氧化依赖于O2-的传播,因此可被超氧化物歧化酶抑制。因此,先前关于单独超氧化物歧化酶抑制6-OHDA自氧化的相互矛盾的报道可以解释为,在足够浓度下,脱辅基蛋白以排除内球金属催化的方式配位痕量金属。