Department of Internal Medicine and Clinical Epidemiology, Princess Alexandra Hospital, Brisbane, Queensland, Australia.
Queensland Facility for Advanced Bioinformatics, Brisbane, Queensland, Australia.
Postgrad Med J. 2019 Jun;95(1124):300-306. doi: 10.1136/postgradmedj-2018-136060. Epub 2019 Jun 22.
Despite mature rapid response systems (RRS) for clinical deterioration, individuals activating RRS have poor outcomes, with up to one in four dying in hospital. We aimed to derive and validate a risk prediction tool for estimating risk of 28-day mortality among hospitalised patients following rapid response team (RRT) activation.
Analysis of prospectively collected data on 1151 consecutive RRT activations involving 800 inpatients at a tertiary adult hospital. Patient characteristics, RRT triggers and actions, and mortality were ascertained from medical records and death registries. A multivariable risk prediction regression model, derived from 600 randomly selected patients, was validated in the remaining 200 patients. Main outcome was accuracy of weighted risk score (measured by area under receiver operator curve (AUC)) and performance characteristics for various cut-off scores.
At 28 days, 150 (18.8%) patients had died. Increasing age, emergency admission, chronic liver disease, chronic kidney disease, malignancy, after-hours RRT activation, increasing National Early Warning Score, major/intense RRT intervention and multiple RRT activations were predictors of mortality. The risk score (0-105) in derivation and validation cohorts had AUCs 0.86 (95% CI 0.82 to 0.89) and 0.82 (95% CI 0.75 to 0.90), respectively. In the validation cohort, cut-off score of 32.5 or higher maximised sensitivity: 81.6% (95% CI 68.4% to 92.1%), specificity: 56.2% (95% CI 49.4% to 63.6%), positive likelihood ratio (LR): 1.9 (95% CI 1.5 to 2.3) and negative LR: 0.3 (95% CI 0.2 to 0.6).
A validated risk score predicted risk of post-RRT death with more than 80% accuracy, helping to identify patients for whom targeted rescue care may improve survival.
尽管已经有成熟的快速反应系统(RRS)用于临床恶化,但激活 RRS 的个体预后仍较差,多达四分之一的患者在住院期间死亡。本研究旨在开发和验证一种风险预测工具,以估计 RRT 激活后住院患者 28 天死亡率的风险。
对一家三级成人医院的 800 名住院患者中连续 1151 例 RRT 激活的前瞻性数据进行分析。从病历和死亡登记中确定患者特征、RRT 触发因素和干预措施以及死亡率。从 600 名随机选择的患者中得出多变量风险预测回归模型,然后在其余 200 名患者中进行验证。主要结局是加权风险评分的准确性(通过接受者操作特征曲线下面积(AUC)衡量)和各种截断值的性能特征。
在 28 天内,有 150 名(18.8%)患者死亡。年龄较大、急诊入院、慢性肝病、慢性肾脏病、恶性肿瘤、夜间 RRT 激活、国家早期预警评分升高、主要/强烈的 RRT 干预和多次 RRT 激活是死亡的预测因素。在推导和验证队列中,风险评分(0-105)的 AUC 分别为 0.86(95%CI 0.82 至 0.89)和 0.82(95%CI 0.75 至 0.90)。在验证队列中,截断值为 32.5 或更高可最大限度提高敏感性:81.6%(95%CI 68.4%至 92.1%)、特异性:56.2%(95%CI 49.4%至 63.6%)、阳性似然比(LR):1.9(95%CI 1.5 至 2.3)和负似然比(LR):0.3(95%CI 0.2 至 0.6)。
验证后的风险评分可预测 RRT 后死亡风险,准确率超过 80%,有助于识别出可能需要针对性抢救护理以提高生存率的患者。