University of St. Gallen, Switzerland.
Carnegie Mellon University, United States.
Cognition. 2019 Nov;192:103971. doi: 10.1016/j.cognition.2019.05.008. Epub 2019 Jun 21.
This paper proposes an original account of decision anomalies and a computational alternative to existing dynamic models of multi-attribute choice. To date, most models attempting to account for the "Big Three" decision anomalies (similarity, attraction, and compromise effects) are variants of evidence accumulation models, or rational Bayesian analysis. This paper provides an existence proof of a new approach in the form of a multi-agent system based on the principles of voting geometry. Assuming there are a number of neural systems (agents) within an individual's brain, the Big Three decision anomalies can arise as a natural consequence of aggregating preferences across these agents. We operationalize these principles in VAMP, (Voting Agent Model of Preferences), and compare its performance to existing computational models as well as to empirical data. This provides a fundamentally different lens for understanding decision anomalies in multi-attribute choice.
本文提出了一种决策异常的原始解释,并提供了一种计算替代方案,用于现有的多属性选择的动态模型。迄今为止,大多数试图解释“三大”决策异常(相似性、吸引力和妥协效应)的模型都是证据积累模型或理性贝叶斯分析的变体。本文通过基于投票几何原理的多主体系统,提供了一种新方法的存在证明。假设个体大脑中有多个神经系统(主体),那么作为这些主体偏好聚合的自然结果,三大决策异常就会出现。我们在 VAMP(偏好投票主体模型)中实现了这些原理,并将其性能与现有的计算模型以及经验数据进行了比较。这为理解多属性选择中的决策异常提供了一个截然不同的视角。