Suppr超能文献

使用逻辑回归模型和临床推理准确预测青少年特发性脊柱侧凸后路选择性胸椎融合术后自发性腰椎曲线矫正。

Accurate prediction of spontaneous lumbar curve correction following posterior selective thoracic fusion in adolescent idiopathic scoliosis using logistic regression models and clinical rationale.

机构信息

Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.

Department for Traumatology and Sports Injuries, Paracelsus Medical University, Salzburg, Austria.

出版信息

Eur Spine J. 2019 Sep;28(9):1987-1997. doi: 10.1007/s00586-019-06000-6. Epub 2019 Jun 24.

Abstract

INTRODUCTION

Accurate prediction of spontaneous lumbar curve correction (SLCC) after selective thoracic fusion (STF) remains difficult. This study sought to improve prediction accuracy of SLCC. The hypothesis was preoperative and intraoperative variables could predict SLCC < 20°.

METHODS

A multicenter observational prospective analysis was conducted to determine predictors of SLCC in AIS patients that had posterior STF. Curve types included major thoracic curves (Lenke 1, 3-4).The primary outcome variable was to establish prediction models, and a postoperative lumbar curve (LC) ≤ 20° was defined as the target variable. Multivariate logistic regression models were established to study the relationship between selected variables and a LC ≤ 20° versus a LC > 20° at ≥ 2-year follow-up. Single and dual thresholds models in perspective of clinical rationales were applied to find models with the highest positive/negative predictive values (PPV/NPV). The secondary outcome measure was SRS scores at ≥ 2-year follow-up.

RESULTS

410 patients were included. At ≥ 2-year follow-up 282 patients had LC ≤ 20°. These patients had better SRS-22 scores than those with LC > 20° (P = 0.02). The postoperative LC and LC ≤ 20° were predicted by preoperative LC and LC-bending Cobb angle (P < 0.01, r = 0.4-0.6). Logistic regression models could be established to identify patients at risk for failing the target LC ≤ 20°.For preoperative LC and LC-bending, the prediction model achieved a NPV/PPV of 80%/72%. If the postoperative main thoracic curve is combined with the preoperative LC and a gray area for difficult decisions was allowed, model accuracy could even be improved (NPV/PPV = 96%/81%).

CONCLUSION

An accurate prediction model for postoperative SLCC was established based on a large analysis of prospective STF cases. These models can support prediction and understanding of postoperative SLCC aiding in surgical decision making when contemplating a selective thoracic fusion. These slides can be retrieved under Electronic Supplementary Material.

摘要

引言

准确预测选择性胸椎融合(STF)后自发性腰椎曲线矫正(SLCC)仍然具有挑战性。本研究旨在提高 SLCC 的预测准确性。假设是术前和术中变量可以预测 SLCC<20°。

方法

进行了一项多中心前瞻性观察分析,以确定患有后路 STF 的 AIS 患者中 SLCC 的预测因子。曲线类型包括主要胸椎曲线(Lenke 1、3-4)。主要结局变量是建立预测模型,术后腰椎曲线(LC)≤20°定义为目标变量。建立多变量逻辑回归模型,以研究选定变量与术后 LC≤20°与 LC>20°在≥2 年随访时的关系。基于临床合理性,应用单阈值和双阈值模型来寻找具有最高阳性/阴性预测值(PPV/NPV)的模型。次要结局测量是≥2 年随访时的 SRS 评分。

结果

共纳入 410 例患者。在≥2 年随访时,282 例患者的 LC≤20°。这些患者的 SRS-22 评分优于 LC>20°的患者(P=0.02)。术后 LC 和 LC≤20°可由术前 LC 和 LC 弯曲 Cobb 角预测(P<0.01,r=0.4-0.6)。可以建立逻辑回归模型来识别有风险的患者无法达到目标 LC≤20°。对于术前 LC 和 LC 弯曲,预测模型的 NPV/PPV 为 80%/72%。如果将术后主要胸椎曲线与术前 LC 结合起来,并允许存在一个难以决策的灰色区域,则模型准确性甚至可以提高(NPV/PPV=96%/81%)。

结论

基于对大量前瞻性 STF 病例的分析,建立了术后 SLCC 的准确预测模型。这些模型可以支持预测和理解术后 SLCC,有助于在考虑选择性胸椎融合时做出手术决策。这些幻灯片可以在电子补充材料中检索。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验