Suppr超能文献

借助SWIFT/T从桌面探索到大规模模型探索

FROM DESKTOP TO LARGE-SCALE MODEL EXPLORATION WITH SWIFT/T.

作者信息

Ozik Jonathan, Collier Nicholson T, Wozniak Justin M, Spagnuolo Carmine

机构信息

Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439, USA.

Dipartimento di Informatica, ISISLab, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano SA, Salerno, ITALY.

出版信息

Proc Winter Simul Conf. 2016 Dec;2016:206-220. doi: 10.1109/WSC.2016.7822090. Epub 2017 Jan 19.

Abstract

As high-performance computing resources have become increasingly available, new modes of computational processing and experimentation have become possible. This tutorial presents the Extreme-scale Model Exploration with Swift/T (EMEWS) framework for combining existing capabilities for model exploration approaches (e.g., model calibration, metaheuristics, data assimilation) and simulations (or any "black box" application code) with the Swift/T parallel scripting language to run scientific workflows on a variety of computing resources, from desktop to academic clusters to Top 500 level supercomputers. We will present a number of use-cases, starting with a simple agent-based model parameter sweep, and ending with a complex adaptive parameter space exploration workflow coordinating ensembles of distributed simulations. The use-cases are published on a public repository for interested parties to download and run on their own.

摘要

随着高性能计算资源越来越容易获取,新的计算处理和实验模式成为可能。本教程介绍了使用Swift/T的极端规模模型探索(EMEWS)框架,该框架用于将现有的模型探索方法(例如模型校准、元启发式算法、数据同化)和模拟(或任何“黑箱”应用程序代码)能力与Swift/T并行脚本语言相结合,以便在从桌面计算机到学术集群再到全球超级计算机500强级别的各种计算资源上运行科学工作流程。我们将展示多个用例,从简单的基于代理的模型参数扫描开始,到协调分布式模拟集合的复杂自适应参数空间探索工作流程结束。这些用例发布在一个公共存储库中,供有兴趣的各方下载并自行运行。

相似文献

1
FROM DESKTOP TO LARGE-SCALE MODEL EXPLORATION WITH SWIFT/T.
Proc Winter Simul Conf. 2016 Dec;2016:206-220. doi: 10.1109/WSC.2016.7822090. Epub 2017 Jan 19.
2
Extreme-scale Dynamic Exploration of a Distributed Agent-based Model with the EMEWS Framework.
IEEE Trans Comput Soc Syst. 2018 Sep;5(3):884-895. doi: 10.1109/TCSS.2018.2859189. Epub 2018 Aug 30.
3
Managing genomic variant calling workflows with Swift/T.
PLoS One. 2019 Jul 9;14(7):e0211608. doi: 10.1371/journal.pone.0211608. eCollection 2019.
4
Accelerating medical research using the swift workflow system.
Stud Health Technol Inform. 2007;126:207-16.
5
High-throughput cancer hypothesis testing with an integrated PhysiCell-EMEWS workflow.
BMC Bioinformatics. 2018 Dec 21;19(Suppl 18):483. doi: 10.1186/s12859-018-2510-x.
6
Reproducible Large-Scale Neuroimaging Studies with the OpenMOLE Workflow Management System.
Front Neuroinform. 2017 Mar 22;11:21. doi: 10.3389/fninf.2017.00021. eCollection 2017.
7
Parallel workflows for data-driven structural equation modeling in functional neuroimaging.
Front Neuroinform. 2009 Oct 20;3:34. doi: 10.3389/neuro.11.034.2009. eCollection 2009.
8
Learning-accelerated discovery of immune-tumour interactions.
Mol Syst Des Eng. 2019 Aug 1;4(4):747-760. doi: 10.1039/c9me00036d. Epub 2019 Jun 7.
10
The Taverna workflow suite: designing and executing workflows of Web Services on the desktop, web or in the cloud.
Nucleic Acids Res. 2013 Jul;41(Web Server issue):W557-61. doi: 10.1093/nar/gkt328. Epub 2013 May 2.

引用本文的文献

1
DISTRIBUTED MODEL EXPLORATION WITH EMEWS.
Proc Winter Simul Conf. 2024 Dec;2024:72-86. doi: 10.1109/wsc63780.2024.10838848.
3
Developing Distributed High-performance Computing Capabilities of an Open Science Platform for Robust Epidemic Analysis.
IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. 2023 May;2023:868-877. doi: 10.1109/ipdpsw59300.2023.00143. Epub 2023 Aug 4.
4
Experiences in Developing a Distributed Agent-based Modeling Toolkit with Python.
Proc PYHPC 2020 (2020). 2020 Nov;2020:1-12. doi: 10.1109/pyhpc51966.2020.00006. Epub 2020 Dec 30.
5
Modeling of hepatitis B virus infection spread in primary human hepatocytes.
bioRxiv. 2025 Feb 7:2025.02.05.636596. doi: 10.1101/2025.02.05.636596.
6
Modeling of randomized hepatitis C vaccine trials: Bridging the gap between controlled human infection models and real-word testing.
PNAS Nexus. 2024 Dec 18;4(1):pgae564. doi: 10.1093/pnasnexus/pgae564. eCollection 2025 Jan.
8
9
Modeling suggests that virion production cycles within individual cells is key to understanding acute hepatitis B virus infection kinetics.
PLoS Comput Biol. 2023 Aug 3;19(8):e1011309. doi: 10.1371/journal.pcbi.1011309. eCollection 2023 Aug.

本文引用的文献

1
Statistical inference for stochastic simulation models--theory and application.
Ecol Lett. 2011 Aug;14(8):816-27. doi: 10.1111/j.1461-0248.2011.01640.x. Epub 2011 Jun 17.
3
Approximate Bayesian Computation (ABC) in practice.
Trends Ecol Evol. 2010 Jul;25(7):410-8. doi: 10.1016/j.tree.2010.04.001. Epub 2010 May 18.
4
Taverna: a tool for the composition and enactment of bioinformatics workflows.
Bioinformatics. 2004 Nov 22;20(17):3045-54. doi: 10.1093/bioinformatics/bth361. Epub 2004 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验