Suppr超能文献

细胞核内的甘油醛-3-磷酸脱氢酶对缺氧诱导的肝星状细胞凋亡至关重要,并且是侵袭性肝细胞癌行为的一个指标。

Nuclear GAPDH is vital for hypoxia-induced hepatic stellate cell apoptosis and is indicative of aggressive hepatocellular carcinoma behavior.

作者信息

Gong Yihang, Zou Baojia, Peng Siqi, Li Peiping, Zhu Genglong, Chen Jiafan, Chen Jianxu, Liu Xialei, Zhou Wenying, Ding Lei, Chen Yutong, Zeng Linjuan, Zhang Baimeng, Cai Chaonong, Li Jian

机构信息

Department of Hepatobiliary Surgery.

Department of Oncology.

出版信息

Cancer Manag Res. 2019 May 30;11:4947-4956. doi: 10.2147/CMAR.S202268. eCollection 2019.

Abstract

Hepatic stellate cells (HSCs) are critical determinants of liver tumor behavior such as vascular invasion, cell proliferation and migration. The apoptosis of HSCs can inhibit tumor growth and contribute to repressing hepatocellular carcinoma (HCC) progression. Our study aims to investigate the impact of nuclear glyceraldehyde-3-phosphate dehydrogenase (GAPDH) on HSCs under hypoxic conditions and the association of nuclear GAPDH with HCC patient outcomes and tumor progression. Following stable cell passage, 0.3% O was used to induce hypoxia. Cell proliferation and apoptosis were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assays and flow cytometry, respectively. Proteins expression were detected by extracting nuclear and cytoplasmic proteins and performing Western blots. GAPDH nuclear translocation was blocked by the agent deprenyl. Immunohistochemical staining for GAPDH was investigated in 137 HCC tissue samples from our center. An analysis of the clinicopathological features, Kaplan-Meier analysis and Cox proportional hazards regression analysis were applied. MTT assays and flow cytometry analyses showed that the nuclear accumulation of GAPDH led to the apoptotic death of HSCs, while blockade of this process with deprenyl significantly decreased apoptosis. Western blots revealed that deprenyl inhibited the nuclear translocation of GAPDH. An analysis of the immunohistochemical staining of HSCs in HCC tissue samples (137) revealed that nuclear GAPDH expression was significantly positively correlated with HIF-1α expression. Overall survival (OS) and time-to-recurrence (TTR) estimated by Kaplan-Meier analyses showed that patients with high HIF-1α or low nuclear GAPDH levels in HSCs had significantly poorer prognosis compared with patients with low HIF-1α or high nuclear GAPDH expression in HSCs. Moreover, patients with combined high HIF-1α/low nuclear GAPDH expression in HSCs had the worst prognosis. The Cox regression analysis revealed that the combination of nuclear GAPDH/HIF-1α expression in HSCs was an independent prognostic factor for OS and TTR in HCC patients. These findings provide a novel mechanism underlying the involvement of intranuclear GAPDH in hypoxia-induced HSCs apoptosis and a correlation between nuclear GAPDH levels and the clinical prognosis, which may prompt the development of a novel therapeutic strategy for HCC.

摘要

肝星状细胞(HSCs)是肝脏肿瘤行为(如血管侵袭、细胞增殖和迁移)的关键决定因素。肝星状细胞的凋亡可抑制肿瘤生长并有助于抑制肝细胞癌(HCC)进展。我们的研究旨在探讨缺氧条件下细胞核甘油醛-3-磷酸脱氢酶(GAPDH)对肝星状细胞的影响以及细胞核GAPDH与肝癌患者预后和肿瘤进展的关系。在细胞稳定传代后,使用0.3%氧气诱导缺氧。分别使用3-(4,5-二甲基噻唑-2-基)-2,5-二苯基溴化四氮唑(MTT)法和流式细胞术分析细胞增殖和凋亡。通过提取细胞核和细胞质蛋白并进行蛋白质印迹法检测蛋白质表达。用司来吉兰阻断GAPDH的核转位。对来自我们中心的137例肝癌组织样本进行GAPDH免疫组织化学染色研究。应用临床病理特征分析、Kaplan-Meier分析和Cox比例风险回归分析。MTT法和流式细胞术分析表明,GAPDH的核积累导致肝星状细胞凋亡死亡,而用司来吉兰阻断这一过程可显著降低凋亡率。蛋白质印迹法显示司来吉兰抑制GAPDH的核转位。对137例肝癌组织样本中的肝星状细胞进行免疫组织化学染色分析发现,细胞核GAPDH表达与缺氧诱导因子-1α(HIF-1α)表达显著正相关。Kaplan-Meier分析估计的总生存期(OS)和复发时间(TTR)显示,与肝星状细胞中HIF-1α水平低或细胞核GAPDH表达高的患者相比,肝星状细胞中HIF-1α水平高或细胞核GAPDH水平低的患者预后明显较差。此外,肝星状细胞中HIF-1α高表达/细胞核GAPDH低表达的患者预后最差。Cox回归分析显示,肝星状细胞中细胞核GAPDH/HIF-1α表达的组合是肝癌患者OS和TTR的独立预后因素。这些发现为细胞核GAPDH参与缺氧诱导的肝星状细胞凋亡提供了一种新机制,以及细胞核GAPDH水平与临床预后之间的相关性,这可能促使开发一种新的肝癌治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cf5/6553950/21a354769802/CMAR-11-4947-g0001.jpg

相似文献

4
Curcumin Suppresses Hepatic Stellate Cell-Induced Hepatocarcinoma Angiogenesis and Invasion through Downregulating CTGF.
Oxid Med Cell Longev. 2019 Jan 16;2019:8148510. doi: 10.1155/2019/8148510. eCollection 2019.
5
Hypoxia Enhances Tumor-Stroma Crosstalk that Drives the Progression of Hepatocellular Carcinoma.
Dig Dis Sci. 2016 Sep;61(9):2568-77. doi: 10.1007/s10620-016-4158-6. Epub 2016 Apr 13.

引用本文的文献

3
Metabolic rearrangements and intratumoral heterogeneity for immune response in hepatocellular carcinoma.
Front Immunol. 2023 Jan 25;14:1083069. doi: 10.3389/fimmu.2023.1083069. eCollection 2023.
7
Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma.
Acta Pharm Sin B. 2022 Feb;12(2):558-580. doi: 10.1016/j.apsb.2021.09.019. Epub 2021 Sep 25.
8
Norcholic Acid Promotes Tumor Progression and Immune Escape by Regulating Farnesoid X Receptor in Hepatocellular Carcinoma.
Front Oncol. 2021 Nov 23;11:711448. doi: 10.3389/fonc.2021.711448. eCollection 2021.
9
Identification of Biomarkers Related to Immune Cell Infiltration in Hepatocellular Carcinoma Using Gene Co-Expression Network.
Pathol Oncol Res. 2021 Apr 2;27:601693. doi: 10.3389/pore.2021.601693. eCollection 2021.
10
The roles and mechanisms of hypoxia in liver fibrosis.
J Transl Med. 2021 May 1;19(1):186. doi: 10.1186/s12967-021-02854-x.

本文引用的文献

2
Mutant p53 prevents GAPDH nuclear translocation in pancreatic cancer cells favoring glycolysis and 2-deoxyglucose sensitivity.
Biochim Biophys Acta Mol Cell Res. 2018 Dec;1865(12):1914-1923. doi: 10.1016/j.bbamcr.2018.10.005. Epub 2018 Oct 5.
4
TGF-β1 Promotes Hepatocellular Carcinoma Invasion and Metastasis via ERK Pathway-Mediated FGFR4 Expression.
Cell Physiol Biochem. 2018;45(4):1690-1699. doi: 10.1159/000487737. Epub 2018 Feb 22.
5
UCP2 inhibition induces ROS/Akt/mTOR axis: Role of GAPDH nuclear translocation in genipin/everolimus anticancer synergism.
Free Radic Biol Med. 2017 Dec;113:176-189. doi: 10.1016/j.freeradbiomed.2017.09.022. Epub 2017 Sep 27.
7
Mechanisms of hepatic stellate cell activation.
Nat Rev Gastroenterol Hepatol. 2017 Jul;14(7):397-411. doi: 10.1038/nrgastro.2017.38. Epub 2017 May 10.
9
Protective effects of hepatic stellate cells against cisplatin-induced apoptosis in human hepatoma G2 cells.
Int J Oncol. 2015 Aug;47(2):632-40. doi: 10.3892/ijo.2015.3024. Epub 2015 May 28.
10
Critical protein GAPDH and its regulatory mechanisms in cancer cells.
Cancer Biol Med. 2015 Mar;12(1):10-22. doi: 10.7497/j.issn.2095-3941.2014.0019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验