Pfizer Inc, New York, NY, USA.
Health Services Consulting Corporation, 169 Summer Road, Boxborough, MA, 01719, USA.
Clin Drug Investig. 2019 Aug;39(8):775-786. doi: 10.1007/s40261-019-00812-6.
Treatment challenges necessitate new approaches to customize care to individual patient needs. Integrating data from randomized controlled trials and observational studies may reduce potential covariate biases, yielding information to improve treatment outcomes. The objective of this study was to predict pregabalin responses, in individuals with painful diabetic peripheral neuropathy, by examining time series data (lagged inputs) collected after treatment initiation vs. baseline using microsimulation.
The platform simulated pregabalin-treated patients to estimate hypothetical future pain responses over 6 weeks based on six distinct time series regressions with lagged variables as inputs (hereafter termed "time series regressions"). Data were from three randomized controlled trials (N = 398) and an observational study (N = 3159). Regressions were derived after performing a hierarchical cluster analysis with a matched patient dataset from coarsened exact matching. Regressions were validated using unmatched (observational study vs. randomized controlled trial) patients. Predictive implications (of 6-week outcomes) were compared using only baseline vs. 1- to 2-week prior data.
Time series regressions for pain performed well (adjusted R 0.85-0.91; root mean square error 0.53-0.57); those with only baseline data performed less well (adjusted R 0.13-0.44; root mean square error 1.11-1.40). Simulated patient distributions yielded positive predictive values for > 50% pain score improvements from baseline for the six clusters (287-777 patients each; range 0.87-0.98).
Effective prediction of pregabalin response for painful diabetic peripheral neuropathy was accomplished through combining cluster analyses, coarsened exact matching, and time series regressions, reflecting distinct patterns of baseline and "on-treatment" variables. These results advance the understanding of microsimulation to predict patient treatment responses through integration and inter-relationships of multiple, complex, and time-dependent characteristics.
治疗挑战需要新方法来根据个体患者的需求定制护理。整合来自随机对照试验和观察性研究的数据可以减少潜在的协变量偏差,从而提供改善治疗结果的信息。本研究的目的是通过使用微模拟检查治疗开始后与基线相比的时间序列数据(滞后输入)来预测患有痛性糖尿病周围神经病变的个体对普瑞巴林的反应。
该平台模拟普瑞巴林治疗的患者,根据六个不同的时间序列回归,使用滞后变量作为输入(以下简称“时间序列回归”),估计 6 周内的假设未来疼痛反应。数据来自三项随机对照试验(N=398)和一项观察性研究(N=3159)。在使用来自粗化精确匹配的匹配患者数据集进行层次聚类分析后,得出回归。使用未匹配的(观察性研究与随机对照试验)患者验证回归。仅使用基线与 1 至 2 周之前的数据比较预测结果(6 周结局)的预测意义。
疼痛的时间序列回归表现良好(调整后的 R 值为 0.85-0.91;均方根误差为 0.53-0.57);仅基线数据的表现较差(调整后的 R 值为 0.13-0.44;均方根误差为 1.11-1.40)。模拟患者分布为六个聚类中的基线疼痛评分改善超过 50%的患者产生了阳性预测值(每个聚类 287-777 例;范围 0.87-0.98)。
通过组合聚类分析、粗化精确匹配和时间序列回归,成功实现了对痛性糖尿病周围神经病变患者普瑞巴林反应的有效预测,反映了基线和“治疗中”变量的不同模式。这些结果通过整合和相互关系多个复杂和时变的特征,推进了对通过微模拟预测患者治疗反应的理解。