Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Safed 1589, Israel.
Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1589, Israel.
Bioinformatics. 2020 Jan 1;36(1):154-159. doi: 10.1093/bioinformatics/btz527.
More than half of the human proteome contains the proline-rich motif, PxxP. This motif has a high propensity for adopting a left-handed polyproline II (PPII) helix and can potentially bind SH3 domains. SH3 domains are generally grouped into two classes, based on whether the PPII binds in a positive (N-to-C terminal) or negative (C-to-N terminal) orientation. Since the discovery of this structural motif, over six decades ago, a systematic understanding of its binding remains poor and the consensus amino acid sequence that binds SH3 domains is still ill defined.
Here, we show that the PPII interaction with SH3 domains is governed by the helix backbone and its prolines, and their rotation angle around the PPII helical axis. Based on a geometric analysis of 131 experimentally solved SH3 domains in complex with PPIIs, we observed a rotary translation along the helical screw axis, and separated them by 120° into three categories we name α (0-120°), β (120-240°) and γ (240-360°). Furthermore, we found that PPII helices are distinguished by a shifting PxxP motif preceded by positively charged residues which act as a structural reading frame and dictates the organization of SH3 domains; however, there is no one single consensus motif for all classified PPIIs. Our results demonstrate a remarkable apparatus of a lock with a rotating and translating key with no known equivalent machinery in molecular biology. We anticipate our model to be a starting point for deciphering the PPII code, which can unlock an exponential growth in our understanding of the relationship between protein structure and function.
We have implemented the proposed methods in the R software environment and in an R package freely available at https://github.com/Grantlab/bio3d.
Supplementary data are available at Bioinformatics online.
超过一半的人类蛋白质组含有脯氨酸丰富的基序 PxxP。该基序具有采用左手聚脯氨酸 II (PPII) 螺旋的高倾向,并且可以潜在地结合 SH3 结构域。SH3 结构域通常基于 PPII 结合是正(从 N 端到 C 端)还是负(从 C 端到 N 端)方向分为两类。自六十多年前发现该结构基序以来,其结合的系统理解仍然很差,并且仍然没有定义结合 SH3 结构域的共识氨基酸序列。
在这里,我们表明 PPII 与 SH3 结构域的相互作用受螺旋骨架及其脯氨酸及其围绕 PPII 螺旋轴的旋转角度控制。基于对 131 个实验解决的 SH3 结构域与 PPII 复合物的几何分析,我们观察到沿螺旋螺旋轴的旋转平移,并将它们分为三类,我们分别命名为α(0-120°)、β(120-240°)和γ(240-360°)。此外,我们发现 PPII 螺旋通过带正电荷残基的移位 PxxP 基序区分,该基序充当结构读取框架,并决定 SH3 结构域的组织;然而,对于所有分类的 PPII 都没有一个单一的共识基序。我们的结果表明,一个带有旋转和平移钥匙的锁具有令人瞩目的装置,在分子生物学中没有已知的等效机构。我们预计我们的模型将成为破解 PPII 密码的起点,可以解锁我们对蛋白质结构与功能之间关系的理解的指数级增长。
我们已经在 R 软件环境中实现了所提出的方法,并在 https://github.com/Grantlab/bio3d 上提供了一个免费的 R 包。
补充数据可在 Bioinformatics 在线获取。