文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在 F9 基因外显子 1-5 中导致血友病 B 的错义突变的计算机分析。

In silico analysis of missense mutations in exons 1-5 of the F9 gene that cause hemophilia B.

机构信息

Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, C.P, 44340, Guadalajara, Jalisco, México.

División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social (IMSS), Jalisco, C.P, 44340, Guadalajara, Mexico.

出版信息

BMC Bioinformatics. 2019 Jun 28;20(1):363. doi: 10.1186/s12859-019-2919-x.


DOI:10.1186/s12859-019-2919-x
PMID:31253089
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6599346/
Abstract

BACKGROUND: Missense mutations in the first five exons of F9, which encodes factor FIX, represent 40% of all mutations that cause hemophilia B. To address the ongoing debate regarding in silico identification of disease-causing mutations at these exons, we analyzed 215 missense mutations from www.factorix.org using six in silico prediction tools, which are the most common used programs for analysis prediction of impact of mutations on the protein structure and function, with further advantage of using similar approaches. We developed different algorithms to integrate multiple predictions from such tools. In order to approach a structural analysis on FIX we performed a modeling of five selected pathogenic mutations. RESULTS: SIFT, PolyPhen-2 HumDiv, SNAP2, and MutationAssessor were the most successful in identifying true non-causative and causative mutations. A proposed function integrating these algorithms (wgP4) was the most sensitive (90.1%), specific (22.6%), and accurate (87%) than similar functions, and identified 187 variants as deleterious. Clinical phenotype was significantly associated with predicted causative mutations at all five exons. However, PolyPhen-2 HumDiv was more successful in linking clinical severity to specific exons, while functions that integrate 4-6 predictions were more successful in linking phenotype to genotypes at the light chain (exons 3-5). The most important value of integrating multiple predictions is the inclusion of scores derived from different approaches. Modeling of protein structure showed the effects of pathogenic nsSNPs on structure and function of FIX. CONCLUSIONS: A simple function that integrates information from different in silico programs yields the best prediction of mutated phenotypes. However, the specificity, sensitivity, and accuracy of genotype-phenotype predictions depend on specific characteristics of the protein domain and the disease of interest as we validated by the structural analysis of selected pathogenic F9 mutations. The proposed function integrating algorithm (wgP4) might be useful for the analysis of nsSNPs impact on other genes.

摘要

背景:因子 IX(FIX)编码基因 F9 的前五个外显子中的错义突变占导致乙型血友病突变的 40%。为了解决这些外显子中致病变异的计算机预测的持续争议,我们使用最常用于分析突变对蛋白质结构和功能影响的六种计算机预测工具,分析了来自 www.factorix.org 的 215 个错义突变,这些工具具有使用相似方法的进一步优势。我们开发了不同的算法来整合这些工具的多个预测结果。为了对 FIX 进行结构分析,我们对五个选定的致病性突变进行了建模。

结果:SIFT、PolyPhen-2 HumDiv、SNAP2 和 MutationAssessor 最成功地识别了真正的非致病和致病突变。一种整合这些算法的功能(wgP4)比类似的功能更敏感(90.1%)、更特异(22.6%)、更准确(87%),并鉴定了 187 个变异为有害。临床表型与所有五个外显子中的预测致病变异显著相关。然而,PolyPhen-2 HumDiv 更成功地将临床严重程度与特定外显子联系起来,而整合 4-6 个预测的功能则更成功地将表型与轻链(外显子 3-5)的基因型联系起来。整合多个预测的最重要价值是包括来自不同方法的得分。蛋白质结构建模显示了致病性 nsSNP 对 FIX 结构和功能的影响。

结论:整合来自不同计算机程序信息的简单功能可以对突变表型进行最佳预测。然而,基因型-表型预测的特异性、敏感性和准确性取决于蛋白质结构域和感兴趣疾病的特定特征,我们通过对选定的致病性 F9 突变的结构分析进行了验证。整合算法的建议功能(wgP4)可能对分析其他基因中 nsSNP 的影响有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3d2/6599346/6c2a16954e3f/12859_2019_2919_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3d2/6599346/39d69fbfd931/12859_2019_2919_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3d2/6599346/dc0384ca342f/12859_2019_2919_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3d2/6599346/72e63a8e5216/12859_2019_2919_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3d2/6599346/beed6c2babd6/12859_2019_2919_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3d2/6599346/6c2a16954e3f/12859_2019_2919_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3d2/6599346/39d69fbfd931/12859_2019_2919_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3d2/6599346/dc0384ca342f/12859_2019_2919_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3d2/6599346/72e63a8e5216/12859_2019_2919_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3d2/6599346/beed6c2babd6/12859_2019_2919_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3d2/6599346/6c2a16954e3f/12859_2019_2919_Fig5_HTML.jpg

相似文献

[1]
In silico analysis of missense mutations in exons 1-5 of the F9 gene that cause hemophilia B.

BMC Bioinformatics. 2019-6-28

[2]
A new in silico approach to investigate molecular aspects of factor IX missense causative mutations and their impact on the hemophilia B severity.

Hum Mutat. 2019-3-28

[3]
In silico profiling of deleterious amino acid substitutions of potential pathological importance in haemophlia A and haemophlia B.

J Biomed Sci. 2012-3-16

[4]
Assessment of the F9 genotype-specific FIX inhibitor risks and characterisation of 10 novel severe F9 defects in the first molecular series of Argentinian patients with haemophilia B.

Thromb Haemost. 2012-10-23

[5]
Mutation Spectrum and Genotype-Phenotype Analyses in a Pakistani Cohort With Hemophilia B.

Clin Appl Thromb Hemost. 2018-7

[6]
A novel missense mutation in F9 gene causes hemophilia B in a family with clinical variability.

Blood Coagul Fibrinolysis. 2020-3

[7]
[Double mutation, a 2-bp deletion and Val211Ile, in the blood coagulation factor IX gene of a patient with severe hemophilia B].

Rinsho Byori. 2009-5

[8]
An integrated multitool analysis contributes elements to interpreting unclassified factor IX missense variants associated with hemophilia B.

J Thromb Haemost. 2024-10

[9]
Comprehensive analysis of phenotypes and genetics in 21 Chinese families with haemophilia B: characterization of five novel mutations.

Haemophilia. 2014-11

[10]
Apparent synonymous mutation F9 c.87A>G causes secretion failure by in-frame mutation with aberrant splicing.

Thromb Res. 2019-5-1

引用本文的文献

[1]
The Spectra of Disease-Causing Mutations in the Ferroportin 1 () Encoding Gene and Related Iron Overload Phenotypes (Hemochromatosis Type 4 and Ferroportin Disease).

Hum Mutat. 2023-6-13

[2]
Computational approaches for predicting variant impact: An overview from resources, principles to applications.

Front Genet. 2022-9-29

[3]
The Molecular Basis of FIX Deficiency in Hemophilia B.

Int J Mol Sci. 2022-3-2

本文引用的文献

[1]
Sodium-site in serine protease domain of human coagulation factor IXa: evidence from the crystal structure and molecular dynamics simulations study.

J Thromb Haemost. 2019-3-6

[2]
UniProt: a worldwide hub of protein knowledge.

Nucleic Acids Res. 2019-1-8

[3]
Phenotype prediction for mucopolysaccharidosis type I by in silico analysis.

Orphanet J Rare Dis. 2017-7-4

[4]
Diagnosis of inherited bleeding disorders in the genomic era.

Br J Haematol. 2017-11

[5]
Cell biology: Sort of unexpected.

Nature. 2016-11-30

[6]
FFPred 3: feature-based function prediction for all Gene Ontology domains.

Sci Rep. 2016-8-26

[7]
Protein stability: a crystallographer's perspective.

Acta Crystallogr F Struct Biol Commun. 2016-2

[8]
Once-weekly prophylactic treatment vs. on-demand treatment with nonacog alfa in patients with moderately severe to severe haemophilia B.

Haemophilia. 2016-5

[9]
SIFT missense predictions for genomes.

Nat Protoc. 2015-12-3

[10]
Better prediction of functional effects for sequence variants.

BMC Genomics. 2015

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索