Qin Qing, Zhao Yun, Schmallegger Max, Heil Tobias, Schmidt Johannes, Walczak Ralf, Gescheidt-Demner Georg, Jiao Haijun, Oschatz Martin
Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany.
Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany.
Angew Chem Int Ed Engl. 2019 Sep 9;58(37):13101-13106. doi: 10.1002/anie.201906056. Epub 2019 Jul 25.
The electrochemical conversion of N at ambient conditions using renewably generated electricity is an attractive approach for sustainable ammonia (NH ) production. Considering the chemical inertness of N , rational design of efficient and stable catalysts is required. Therefore, in this work, it is demonstrated that a C-doped TiO /C (C-Ti O /C) material derived from the metal-organic framework (MOF) MIL-125(Ti) can achieve a high Faradaic efficiency (FE) of 17.8 %, which even surpasses most of the established noble metal-based catalysts. On the basis of the experimental results and theoretical calculations, the remarkable properties of the catalysts can be attributed to the doping of carbon atoms into oxygen vacancies (OVs) and the formation of Ti-C bonds in C-Ti O . This binding motive is found to be energetically more favorable for N activation compared to the non-substituted OVs in TiO . This work elucidates that electrochemical N reduction reaction (NRR) performance can be largely improved by creating catalytically active centers through rational substitution of anions into metal oxides.
在环境条件下利用可再生电力对氮进行电化学转化是可持续生产氨(NH₃)的一种有吸引力的方法。考虑到氮的化学惰性,需要合理设计高效且稳定的催化剂。因此,在这项工作中,证明了一种源自金属有机框架(MOF)MIL-125(Ti)的碳掺杂TiO₂/C(C-TiO₂/C)材料能够实现17.8%的高法拉第效率(FE),这甚至超过了大多数已有的贵金属基催化剂。基于实验结果和理论计算,催化剂的显著性能可归因于碳原子掺杂到氧空位(OVs)中以及在C-TiO₂中形成Ti-C键。与TiO₂中未被取代的OVs相比,发现这种结合方式在能量上对氮活化更有利。这项工作阐明,通过将阴离子合理取代到金属氧化物中来创建催化活性中心,可以大大提高电化学氮还原反应(NRR)的性能。