Zhang Yong, Konya Masashi, Kutsuma Ayaka, Lim Seonghyeon, Mandai Toshihiko, Munakata Hirokazu, Kanamura Kiyoshi
Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-4 Minamiosawa, Hachioji-shi, Tokyo, 192 0364, Japan.
Center for Research on Energy and Environmental Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
Small. 2019 Sep;15(36):e1902236. doi: 10.1002/smll.201902236. Epub 2019 Jul 1.
Magnesium batteries have the potential to be a next generation battery with large capability and high safety, owing to the high abundance, great volumetric energy density, and reversible dendrite-free capability of Mg anodes. However, the lack of a stable high-voltage electrolyte, and the sluggish Mg-ion diffusion in lattices and through interfaces limit the practical uses of Mg batteries. Herein, a spinel MgIn S microflower-like material assembled by 2D-ultrathin (≈5.0 nm) nanosheets is reported and first used as a cathode material for high-temperature Mg batteries with an ionic liquid electrolyte. The nonflammable ionic liquid electrolyte ensure the safety under high temperatures. As prepared MgIn S exhibits wide-temperature-range adaptability (50-150 °C), ultrahigh capacity (≈500 mAh g under 1.2 V vs Mg/Mg ), fast Mg diffusibility (≈2.0 × 10 cm s ), and excellent cyclability (without capacity decay after 450 cycles). These excellent electrochemical properties are due to the fast kinetics of magnesium by the 2D nanosheets spinel structure and safe high-temperature operation environment. From ex situ X-ray diffraction and transmission electron microscopy measurements, a conversion reaction of the Mg storage mechanism is found. The excellent performance and superior security make it promising in high-temperature batteries for practical applications.
镁电池有潜力成为下一代大容量、高安全性的电池,这归因于镁负极的高丰度、高体积能量密度以及无枝晶可逆的特性。然而,缺乏稳定的高压电解质以及镁离子在晶格和界面间缓慢的扩散限制了镁电池的实际应用。在此,报道了一种由二维超薄(约5.0纳米)纳米片组装而成的尖晶石型MgInS微花状材料,并首次将其用作具有离子液体电解质的高温镁电池的正极材料。不可燃的离子液体电解质确保了高温下的安全性。所制备的MgInS表现出宽温度范围适应性(50 - 150°C)、超高容量(相对于Mg/Mg在1.2V下约500 mAh g)、快速的镁扩散性(约2.0×10 cm s)以及优异的循环稳定性(450次循环后无容量衰减)。这些优异的电化学性能归因于二维纳米片尖晶石结构对镁的快速动力学以及安全的高温运行环境。通过非原位X射线衍射和透射电子显微镜测量,发现了镁存储机制的转化反应。其优异的性能和卓越的安全性使其在高温电池的实际应用中具有广阔前景。