Suppr超能文献

评估遗传预测的循环蛋白生物标志物与乳腺癌风险之间的关联。

Evaluation of associations between genetically predicted circulating protein biomarkers and breast cancer risk.

机构信息

Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN.

Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom.

出版信息

Int J Cancer. 2020 Apr 15;146(8):2130-2138. doi: 10.1002/ijc.32542. Epub 2019 Jul 16.

Abstract

A small number of circulating proteins have been reported to be associated with breast cancer risk, with inconsistent results. Herein, we attempted to identify novel protein biomarkers for breast cancer via the integration of genomics and proteomics data. In the Breast Cancer Association Consortium (BCAC), with 122,977 cases and 105,974 controls of European descendants, we evaluated the associations of the genetically predicted concentrations of >1,400 circulating proteins with breast cancer risk. We used data from a large-scale protein quantitative trait loci (pQTL) analysis as our study instrument. Summary statistics for these pQTL variants related to breast cancer risk were obtained from the BCAC and used to estimate odds ratios (OR) for each protein using the inverse-variance weighted method. We identified 56 proteins significantly associated with breast cancer risk by instrumental analysis (false discovery rate <0.05). Of these, the concentrations of 32 were influenced by variants close to a breast cancer susceptibility locus (ABO, 9q34.2). Many of these proteins, such as insulin receptor, insulin-like growth factor receptor 1 and other membrane receptors (OR: 0.82-1.18, p values: 6.96 × 10 -3.28 × 10 ), are linked to insulin resistance and estrogen receptor signaling pathways. Proteins identified at other loci include those involved in biological processes such as alcohol and lipid metabolism, proteolysis, apoptosis, immune regulation and cell motility and proliferation. Consistent associations were observed for 22 proteins in the UK Biobank data (p < 0.05). The study identifies potential novel biomarkers for breast cancer, but further investigation is needed to replicate our findings.

摘要

少量循环蛋白已被报道与乳腺癌风险相关,但结果并不一致。在此,我们试图通过整合基因组学和蛋白质组学数据来鉴定乳腺癌的新型蛋白生物标志物。在乳腺癌协会联盟(BCAC)中,我们评估了 >1400 种循环蛋白的遗传预测浓度与乳腺癌风险之间的关联,该研究纳入了 122977 例病例和 105974 例对照,这些个体均为欧洲后裔。我们使用了大规模蛋白质数量性状基因座(pQTL)分析的数据作为研究工具。从 BCAC 获得了与乳腺癌风险相关的这些 pQTL 变异的汇总统计数据,并使用逆方差加权法估计每种蛋白质的比值比(OR)。通过工具分析,我们确定了 56 种与乳腺癌风险显著相关的蛋白质(错误发现率<0.05)。其中,32 种蛋白的浓度受到乳腺癌易感基因座(ABO,9q34.2)附近变体的影响。这些蛋白中的许多,如胰岛素受体、胰岛素样生长因子受体 1 和其他膜受体(OR:0.82-1.18,p 值:6.96×10 -3-2.88×10 ),与胰岛素抵抗和雌激素受体信号通路有关。在其他基因座鉴定到的蛋白包括参与生物过程的蛋白,如酒精和脂质代谢、蛋白水解、细胞凋亡、免疫调节以及细胞迁移和增殖。在英国生物库数据中观察到 22 种蛋白的一致性关联(p<0.05)。本研究鉴定出了乳腺癌潜在的新型生物标志物,但需要进一步研究来复制我们的发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验