Jin Lunqiang, Zhang Xiang, Zhao Weifeng, Chen Shengqiu, Shi Zhenqiang, Wang Jingxia, Xie Yi, Liang Feng, Zhao Changsheng
The State Key Laboratory of Refractories and Metallurgy, School of Chemistry & Chemical Engineering , Wuhan University of Science and Technology , Wuhan 430081 , P. R. China.
The State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering , Sichuan University , Chengdu 610065 , P. R. China.
Langmuir. 2019 Jul 16;35(28):9161-9168. doi: 10.1021/acs.langmuir.9b01302. Epub 2019 Jul 2.
Applications of effective and steady metal catalysts for the hydrogen evolution reaction (HER) via electrolysis of water have a huge potential to relax energy crisis and reduce carbon dioxide emission. Herein, we design a simple, facile, and general approach for the synthesis of a series of transition-metal phosphide nanoparticles embedded in N-doped carbon (NC) nanomaterials using metal salts, abundantly available hexamethylene diamine tetra(methyl phosphonic acid), and urea as precursors. The resultant transition-metal phosphide nanoparticles can serve as high-efficiency and steady HER catalysts. Particularly, when the current density is 10 mA cm, the overpotentials of the obtained RhP@NC are 30, 85, and 70 mV in acid (0.5 M HSO), neutral (1 M PBS), and alkaline (1 M KOH) solutions, respectively. Besides, the RhP@NC exhibits good stability after 10 h in aforementioned solutions. More importantly, it is suited to fabricate other transition-metal phosphide nanoparticles/NC heterostructures by this synthetic strategy. The obtained CoP@NC, FeP@NC, NiP@NC, and CuP@NC also show relatively high efficiency for HER. Hence, the versatile synthesis strategy opens a new route for the research and fabrication of transition-metal phosphide-based catalysts for HER.
通过水电解制备高效稳定的析氢反应(HER)金属催化剂,在缓解能源危机和减少二氧化碳排放方面具有巨大潜力。在此,我们设计了一种简单、便捷且通用的方法,以金属盐、大量可得的六亚甲基二胺四(甲基膦酸)和尿素为前驱体,合成一系列嵌入氮掺杂碳(NC)纳米材料中的过渡金属磷化物纳米颗粒。所得的过渡金属磷化物纳米颗粒可作为高效稳定的HER催化剂。特别地,当电流密度为10 mA cm时,在酸性(0.5 M HSO)、中性(1 M PBS)和碱性(1 M KOH)溶液中,所制备的RhP@NC的过电位分别为30、85和70 mV。此外,RhP@NC在上述溶液中经过10小时后仍表现出良好的稳定性。更重要的是,通过这种合成策略适合制备其他过渡金属磷化物纳米颗粒/NC异质结构。所制备的CoP@NC、FeP@NC、NiP@NC和CuP@NC在HER方面也表现出相对较高的效率。因此,这种通用的合成策略为HER过渡金属磷化物基催化剂的研究和制备开辟了一条新途径。