Suppr超能文献

白喉毒素、操纵子及其通过 Fe2+ 激活脱辅基-DtxR 进行的调控。

: Diphtheria Toxin, the Operon, and Its Regulation by Fe2 Activation of apo-DtxR.

机构信息

Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21231.

出版信息

Microbiol Spectr. 2019 Jul;7(4). doi: 10.1128/microbiolspec.GPP3-0063-2019.

Abstract

Diphtheria is one of the most well studied of all the bacterial infectious diseases. These milestone studies of toxigenic along with its primary virulence determinant, diphtheria toxin, have established the paradigm for the study of other related bacterial protein toxins. This review highlights those studies that have contributed to our current understanding of the structure-function relationships of diphtheria toxin, the molecular mechanism of its entry into the eukaryotic cell cytosol, the regulation of diphtheria expression by holo-DtxR, and the molecular basis of transition metal ion activation of apo-DtxR itself. These seminal studies have laid the foundation for the protein engineering of diphtheria toxin and the development of highly potent eukaryotic cell-surface receptor-targeted fusion protein toxins for the treatment of human diseases that range from T cell malignancies to steroid-resistant graft-versus-host disease to metastatic melanoma. This deeper scientific understanding of diphtheria toxin and the regulation of its expression have metamorphosed the third-most-potent bacterial toxin known into a life-saving targeted protein therapeutic, thereby at least partially fulfilling Paul Erlich's concept of a magic bullet-"a chemical that binds to and specifically kills microbes or tumor cells."

摘要

白喉是所有细菌性传染病中研究得最透彻的疾病之一。这些关于产毒菌及其主要毒力决定因子白喉毒素的里程碑式研究,为研究其他相关的细菌蛋白毒素确立了范例。本综述重点介绍了那些有助于我们当前理解白喉毒素结构-功能关系、其进入真核细胞质的分子机制、全毒素结合蛋白(holo-DtxR)对白喉毒素表达的调控以及金属离子激活apo-DtxR 自身的分子基础的研究。这些开创性的研究为白喉毒素的蛋白质工程以及开发高效的真核细胞表面受体靶向融合蛋白毒素奠定了基础,这些毒素可用于治疗从 T 细胞恶性肿瘤到类固醇耐药移植物抗宿主病再到转移性黑色素瘤等人类疾病。对白喉毒素及其表达调控的更深入的科学认识,已经将已知第三强效的细菌毒素转化为一种救命的靶向蛋白治疗药物,从而至少部分实现了保罗·埃尔利希(Paul Ehrlich)的“魔术子弹”概念——“一种与微生物或肿瘤细胞结合并特异性杀死它们的化学物质”。

相似文献

1
: Diphtheria Toxin, the Operon, and Its Regulation by Fe2 Activation of apo-DtxR.
Microbiol Spectr. 2019 Jul;7(4). doi: 10.1128/microbiolspec.GPP3-0063-2019.
3
Biology and molecular epidemiology of diphtheria toxin and the tox gene.
J Infect Dis. 2000 Feb;181 Suppl 1:S156-67. doi: 10.1086/315554.
6
Iron, DtxR, and the regulation of diphtheria toxin expression.
Mol Microbiol. 1994 Oct;14(2):191-7. doi: 10.1111/j.1365-2958.1994.tb01280.x.
7
New diphtheria toxin repressor types depicted in a Romanian collection of Corynebacterium diphtheriae isolates.
J Basic Microbiol. 2014 Oct;54(10):1136-9. doi: 10.1002/jobm.201300686. Epub 2013 Dec 2.
9
Purification and characterization of the diphtheria toxin repressor.
Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7576-80. doi: 10.1073/pnas.89.16.7576.

引用本文的文献

2
Genome-wide high-throughput transposon mutagenesis unveils key factors for acidic pH adaptation of .
Microbiology (Reading). 2025 Apr;171(4). doi: 10.1099/mic.0.001554.
3
Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking.
Chem Rev. 2024 Dec 25;124(24):13574-13659. doi: 10.1021/acs.chemrev.4c00264. Epub 2024 Dec 10.
4
Transcriptomic profiling of haloarchaeal denitrification through RNA-Seq analysis.
Appl Environ Microbiol. 2024 Jun 18;90(6):e0057124. doi: 10.1128/aem.00571-24. Epub 2024 May 30.
5
Bacteriophage Challenges in Industrial Processes: A Historical Unveiling and Future Outlook.
Pathogens. 2024 Feb 7;13(2):152. doi: 10.3390/pathogens13020152.
6
The molecular mechanisms of the bacterial iron sensor IdeR.
Biochem Soc Trans. 2023 Jun 28;51(3):1319-1329. doi: 10.1042/BST20221539.
7
Antibiotic resistance and siderophores production by clinical strains.
BioTechnologia (Pozn). 2022 Jun 29;103(2):169-184. doi: 10.5114/bta.2022.116211. eCollection 2022.
8
Pan-genomic analysis of gives insights into molecular mechanisms underpinning the transition to a pathogenic phenotype.
Front Microbiol. 2022 Nov 16;13:1011578. doi: 10.3389/fmicb.2022.1011578. eCollection 2022.
9
New Species with the Potential to Produce Diphtheria Toxin.
Pathogens. 2022 Oct 30;11(11):1264. doi: 10.3390/pathogens11111264.
10
AB Enterotoxin-Mediated Pathogenesis: Perspectives Gleaned from Shiga Toxins.
Toxins (Basel). 2022 Jan 16;14(1):62. doi: 10.3390/toxins14010062.

本文引用的文献

1
Second-generation IL-2 receptor-targeted diphtheria fusion toxin exhibits antitumor activity and synergy with anti-PD-1 in melanoma.
Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):3100-3105. doi: 10.1073/pnas.1815087116. Epub 2019 Feb 4.
2
5
Essential lysine residues within transmembrane helix 1 of diphtheria toxin facilitate COPI binding and catalytic domain entry.
Mol Microbiol. 2010 May;76(4):1010-9. doi: 10.1111/j.1365-2958.2010.07159.x. Epub 2010 Apr 14.
6
THE PRODUCTION OF DIPHTHERIA TOXIN.
J Exp Med. 1896 Jan 1;1(1):164-85. doi: 10.1084/jem.1.1.164.
9
Transient T cell depletion causes regression of melanoma metastases.
J Transl Med. 2008 Mar 11;6:12. doi: 10.1186/1479-5876-6-12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验