Suppr超能文献

胃的迷走神经支配重新评估:脑-肠连接组学使用智能终端。

Vagal innervation of the stomach reassessed: brain-gut connectome uses smart terminals.

机构信息

Behavioral Neuroscience Area, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana.

出版信息

Ann N Y Acad Sci. 2019 Oct;1454(1):14-30. doi: 10.1111/nyas.14138. Epub 2019 Jul 3.

Abstract

Brain-gut neural communications have long been considered limited because of conspicuous numerical mismatches. The vagus, the parasympathetic nerve connecting brain and gut, contains thousands of axons, whereas the gastrointestinal (GI) tract contains millions of intrinsic neurons in local plexuses. The numerical paradox was initially recognized in terms of efferent projections, but the number of afferents, which comprise the majority (≈ 80%) of neurites in the vagus, is also relatively small. The present survey of recent morphological observations suggests that vagal terminals, and more generally autonomic and visceral afferent arbors in the stomach as well as throughout the gut, elaborate arbors that are extensive, regionally specialized, polymorphic, polytopic, and polymodal, commonly with multiplicities of receptors and binding sites-smart terminals. The morphological specializations and dynamic tuning of one-to-many efferent projections and many-to-one convergences of contacts onto afferents create a complex architecture capable of extensive peripheral integration in the brain-gut connectome and offset many of the disparities between axon and target numbers. Appreciating this complex architecture can help in the design of therapies for GI disorders.

摘要

脑-肠神经网络的交流一直被认为是有限的,因为明显的数量不匹配。迷走神经是连接大脑和肠道的副交感神经,它包含数千个轴突,而胃肠道(GI)中含有数百万个局部神经丛中的内在神经元。最初,人们从传出投射的角度认识到了这种数量悖论,但传入神经的数量也相对较少,传入神经约占迷走神经中大多数(≈80%)神经纤维的比例。本研究综述了最近的形态学观察结果,结果表明,迷走神经末梢,更普遍的是胃以及整个肠道中的自主神经和内脏传入神经末梢,形成了广泛的、区域特化的、多态的、多区域的、多模式的分支,通常具有多种受体和结合位点——智能末梢。这种一对一传出投射和多对一传入接触的形态特化和动态调谐,形成了一种复杂的结构,能够在脑-肠连接组中进行广泛的外周整合,并弥补了轴突和靶标数量之间的许多差异。了解这种复杂的结构有助于设计治疗胃肠道疾病的方法。

相似文献

1
Vagal innervation of the stomach reassessed: brain-gut connectome uses smart terminals.
Ann N Y Acad Sci. 2019 Oct;1454(1):14-30. doi: 10.1111/nyas.14138. Epub 2019 Jul 3.
2
Brain stem localization of vagal preganglionic neurons.
J Auton Nerv Syst. 1981 Apr;3(2-4):451-81. doi: 10.1016/0165-1838(81)90081-3.
3
Long-term regeneration of abdominal vagus: efferents fail while afferents succeed.
J Comp Neurol. 2003 Jan 6;455(2):222-37. doi: 10.1002/cne.10470.
5
Vagal preganglionic projections to the enteric nervous system characterized with Phaseolus vulgaris-leucoagglutinin.
J Comp Neurol. 1997 Apr 28;381(1):81-100. doi: 10.1002/(sici)1096-9861(19970428)381:1<81::aid-cne7>3.0.co;2-g.
7
Vagal innervation of the rat duodenum.
J Auton Nerv Syst. 2000 Feb 14;79(1):8-18. doi: 10.1016/s0165-1838(99)00093-4.
8
9
Gastrointestinal projection maps of the vagus nerve are specified permanently in the perinatal period.
Brain Res Dev Brain Res. 2001 Jul 23;129(1):57-72. doi: 10.1016/s0165-3806(01)00183-3.

引用本文的文献

1
Role of gut microbiota in neuroinflammation: a focus on perioperative neurocognitive disorders.
Front Cell Infect Microbiol. 2025 Jul 7;15:1582909. doi: 10.3389/fcimb.2025.1582909. eCollection 2025.
3
Noradrenaline Regulation of Brain-Body Communication.
Adv Exp Med Biol. 2025;1477:35-61. doi: 10.1007/978-3-031-89525-8_2.
4
Microbiota-gut-brain-axis: a new target of acupuncture therapy for post-stroke cognitive impairment.
Front Microbiol. 2025 Apr 24;16:1425054. doi: 10.3389/fmicb.2025.1425054. eCollection 2025.
5
Interaction of the Vagus Nerve and Serotonin in the Gut-Brain Axis.
Int J Mol Sci. 2025 Jan 29;26(3):1160. doi: 10.3390/ijms26031160.
7
Oral and gut microbiome profiles in people with early idiopathic Parkinson's disease.
Commun Med (Lond). 2024 Oct 23;4(1):209. doi: 10.1038/s43856-024-00630-8.
8
Desensitizing the autonomic nervous system to mitigate anti-GD2 monoclonal antibody side effects.
Front Oncol. 2024 May 15;14:1380917. doi: 10.3389/fonc.2024.1380917. eCollection 2024.
9
Neural regulation of slow waves and phasic contractions in the distal stomach: a mathematical model.
J Neural Eng. 2024 Jan 4;20(6):066040. doi: 10.1088/1741-2552/ad1610.

本文引用的文献

1
Mechanisms Underlying Microbial-Mediated Changes in Social Behavior in Mouse Models of Autism Spectrum Disorder.
Neuron. 2019 Jan 16;101(2):246-259.e6. doi: 10.1016/j.neuron.2018.11.018. Epub 2018 Dec 3.
3
Vagus Nerve as Modulator of the Brain-Gut Axis in Psychiatric and Inflammatory Disorders.
Front Psychiatry. 2018 Mar 13;9:44. doi: 10.3389/fpsyt.2018.00044. eCollection 2018.
4
Heterogeneity of enterochromaffin cells within the gastrointestinal tract.
Neurogastroenterol Motil. 2017 Jun;29(6). doi: 10.1111/nmo.13101.
8
Organization of vagal afferents in pylorus: mechanoreceptors arrayed for high sensitivity and fine spatial resolution?
Auton Neurosci. 2014 Jul;183:36-48. doi: 10.1016/j.autneu.2014.02.008. Epub 2014 Mar 6.
10
The gut as a sensory organ.
Nat Rev Gastroenterol Hepatol. 2013 Dec;10(12):729-40. doi: 10.1038/nrgastro.2013.180. Epub 2013 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验