Wang Qiong, Ouyang Zhengbiao, Liu Qiang, Lin Mi
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
THz Technical Research Center of Shenzhen University, Shenzhen University, Shenzhen 518060, China.
Nanomaterials (Basel). 2019 Jul 4;9(7):975. doi: 10.3390/nano9070975.
Multiple resonance modes have important applications since they can provide multi-frequency operation for devices and bring great flexibility in practice. In this paper, based on a fan-shaped cavity coupled to a metal-isolator-metal (MIM) waveguide, a new kind of ultracompact plasmonic nanostructure is proposed to realize multiple resonance modes with dense distribution in a broad spectral range, and demonstrated through finite-element method (FEM) simulations. As many as ten resonance modes with an average interval of about 30 nm are obtained. They originate from the coexistence and interference of three types of basic modes in the fan-shaped cavity, i.e., the ring-waveguide modes, the modes in a ring array of periodic air grooves, and the metal-core-cavity modes. The dependence of resonance modes on structure parameters is investigated, which can provide an effective guide for choosing appropriate multiple-resonance-mode structures. Furthermore, by means of adjusting the geometrical asymmetry induced by the axial offset of the metal core in the fan-shaped cavity, the resonance modes can be effectively modulated, and some new modes appear because the wave path in the cavity is changed. The result proposes a novel way to create multiple resonance modes in plasmonic nanostructures, providing additional degrees of freedom for tailoring the resonance spectra and promising applications in various plasmonic devices, such as optical filters, ultrafast switches, biochemical sensors, and data storages.
多种共振模式具有重要应用,因为它们可为器件提供多频操作,并在实际应用中带来极大的灵活性。本文基于一个与金属-绝缘体-金属(MIM)波导耦合的扇形腔,提出了一种新型超紧凑等离子体纳米结构,以在宽光谱范围内实现密集分布的多种共振模式,并通过有限元方法(FEM)模拟进行了验证。获得了多达十种共振模式,平均间隔约为30纳米。它们源于扇形腔中三种基本模式的共存和干涉,即环形波导模式、周期性空气槽环形阵列中的模式以及金属芯腔模式。研究了共振模式对结构参数的依赖性,这可为选择合适的多共振模式结构提供有效指导。此外,通过调整扇形腔中金属芯轴向偏移引起的几何不对称性,可以有效地调制共振模式,并且由于腔中的波路径发生变化,会出现一些新的模式。该结果提出了一种在等离子体纳米结构中产生多种共振模式的新方法,为定制共振光谱提供了额外的自由度,并有望在各种等离子体器件中得到应用,如光学滤波器、超快开关、生化传感器和数据存储设备。