Suppr超能文献

铁取代对CoFeS(x≤0.30)热电性能的影响。

Impact of the iron substitution on the thermoelectric properties of CoFe S ( x ≤ 0.30).

作者信息

Salas Ulises Acevedo, Fourati Ismail, Juraszek Jean, Richomme Fabienne, Pelloquin Denis, Maignan Antoine, Hébert Sylvie

机构信息

1 Normandie université, ENSICAEN, UNICAEN, CNRS, CRISMAT UMR6508 , 14000 Caen , France.

2 Normandie université, UNIROUEN, INSA Rouen, CNRS, GPM UMR6634 , 76000 Rouen , France.

出版信息

Philos Trans A Math Phys Eng Sci. 2019 Aug 26;377(2152):20180337. doi: 10.1098/rsta.2018.0337. Epub 2019 Jul 8.

Abstract

The strong interplay between magnetism and transport can tune the thermoelectric properties in chalcogenides and oxides. In the case of ferromagnetic CoS pyrite, it was previously shown that the power factor is large at room temperature, reaching 1 mW mK and abruptly increases for temperatures below the Curie transition ( T), an increase potentially due to a magnonic effect on the Seebeck ( S) coefficient. The too large thermal conductivity approximately equal to 10.5 W mK at room temperature prevents this pyrite from being a good thermoelectric material. In this work, samples belonging to the CoFe S pyrite family ( x = 0, 0.15 and 0.30) have thus been investigated in order to modify the thermal properties by the introduction of disorder on the Co site. We show here that the thermal conductivity can indeed be reduced by such a substitution, but that this substitution predominantly induces a reduction of the electronic part of the thermal conductivity and not of the lattice part. Interestingly, the magnonic contribution to S below T disappears as x increases, while at high T, S tends to a very similar value (close to -42 µV K) for all the samples investigated. This article is part of a discussion meeting issue 'Energy materials for a low carbon future'.

摘要

磁性与输运之间的强相互作用能够调节硫族化物和氧化物中的热电性能。对于铁磁体CoS黄铁矿,此前的研究表明其功率因数在室温下较大,可达1 mW m⁻²K⁻²,且在低于居里转变温度(Tc)时会突然增大,这种增大可能是由于磁振子对塞贝克(S)系数的影响。然而,室温下约10.5 W m⁻¹K⁻¹的过高热导率阻碍了这种黄铁矿成为一种优良的热电材料。在这项工作中,对属于CoFeₓS黄铁矿家族(x = 0、0.15和0.30)的样品进行了研究,以便通过在Co位点引入无序来改变热性能。我们在此表明,通过这种取代确实可以降低热导率,但这种取代主要导致热导率的电子部分降低,而非晶格部分。有趣的是,随着x的增加,低于Tc时磁振子对S的贡献消失,而在高温下,所有研究样品的S都趋于非常相似的值(接近 -42 μV K⁻¹)。本文是“低碳未来的能源材料”讨论会议文集的一部分。

相似文献

1
Impact of the iron substitution on the thermoelectric properties of CoFe S ( x ≤ 0.30).
Philos Trans A Math Phys Eng Sci. 2019 Aug 26;377(2152):20180337. doi: 10.1098/rsta.2018.0337. Epub 2019 Jul 8.
2
Electron Density Optimization and the Anisotropic Thermoelectric Properties of Ti Self-Intercalated TiS Compounds.
ACS Appl Mater Interfaces. 2018 Sep 26;10(38):32344-32354. doi: 10.1021/acsami.8b10449. Epub 2018 Sep 12.
3
Phase Formation Behavior and Thermoelectric Transport Properties of S-Doped FeSeS Polycrystalline Alloys.
Micromachines (Basel). 2022 Nov 25;13(12):2066. doi: 10.3390/mi13122066.
4
Phonon transport and thermoelectric properties of semiconducting BiTeX (X = S, Se, Te) monolayers.
Phys Chem Chem Phys. 2019 Mar 6;21(10):5679-5688. doi: 10.1039/c8cp05793a.
5
Colossal positive Seebeck coefficient and low thermal conductivity in reduced TiO(2).
J Phys Condens Matter. 2009 May 20;21(20):205703. doi: 10.1088/0953-8984/21/20/205703. Epub 2009 Apr 24.
6
Structural stability and thermoelectric performance of high quality synthetic and natural pyrites (FeS).
Dalton Trans. 2019 Jul 16;48(28):10703-10713. doi: 10.1039/c9dt01902b.
7
Enhanced Thermoelectric Properties of Codoped CrSe: The Distinct Roles of Transition Metals and S.
ACS Appl Mater Interfaces. 2018 Jul 5;10(26):22389-22400. doi: 10.1021/acsami.8b05080. Epub 2018 Jun 25.
8
First-principles prediction of large thermoelectric efficiency in superionic LiSnX (X = S, Se).
Phys Chem Chem Phys. 2020 Jan 2;22(2):878-889. doi: 10.1039/c9cp05939c.
9
Searching for new thermoelectric materials: some examples among oxides, sulfides and selenides.
J Phys Condens Matter. 2016 Jan 13;28(1):013001. doi: 10.1088/0953-8984/28/1/013001. Epub 2015 Dec 8.
10
Thermoelectric materials taking advantage of spin entropy: lessons from chalcogenides and oxides.
Sci Technol Adv Mater. 2021 Aug 3;22(1):583-596. doi: 10.1080/14686996.2021.1951593. eCollection 2021.

本文引用的文献

1
Bismuth Telluride and Its Alloys as Materials for Thermoelectric Generation.
Materials (Basel). 2014 Mar 28;7(4):2577-2592. doi: 10.3390/ma7042577.
2
Searching for new thermoelectric materials: some examples among oxides, sulfides and selenides.
J Phys Condens Matter. 2016 Jan 13;28(1):013001. doi: 10.1088/0953-8984/28/1/013001. Epub 2015 Dec 8.
3
Band engineering of thermoelectric materials.
Adv Mater. 2012 Dec 4;24(46):6125-35. doi: 10.1002/adma.201202919. Epub 2012 Oct 17.
4
Spin caloritronics.
Nat Mater. 2012 Apr 23;11(5):391-9. doi: 10.1038/nmat3301.
5
Composition controlled spin polarization in Co(1-x)Fe(x)S(2) alloys.
J Phys Condens Matter. 2007 Aug 8;19(31):315219. doi: 10.1088/0953-8984/19/31/315219. Epub 2007 Jul 4.
6
Scaling behavior in thermoelectric misfit cobalt oxides.
Phys Rev Lett. 2006 Jul 28;97(4):046601. doi: 10.1103/PhysRevLett.97.046601. Epub 2006 Jul 25.
7
Spin entropy as the likely source of enhanced thermopower in Na(x)Co2O4.
Nature. 2003 May 22;423(6938):425-8. doi: 10.1038/nature01639.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验