Boes Paul, Eisert Jens, Gallego Rodrigo, Müller Markus P, Wilming Henrik
Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany.
Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria.
Phys Rev Lett. 2019 May 31;122(21):210402. doi: 10.1103/PhysRevLett.122.210402.
The von Neumann entropy is a key quantity in quantum information theory and, roughly speaking, quantifies the amount of quantum information contained in a state when many identical and independent (i.i.d.) copies of the state are available, in a regime that is often referred to as being asymptotic. In this Letter, we provide a new operational characterization of the von Neumann entropy which neither requires an i.i.d. limit nor any explicit randomness. We do so by showing that the von Neumann entropy fully characterizes single-shot state transitions in unitary quantum mechanics, as long as one has access to a catalyst-an ancillary system that can be reused after the transition-and an environment which has the effect of dephasing in a preferred basis. Building upon these insights, we formulate and provide evidence for the catalytic entropy conjecture, which states that the above result holds true even in the absence of decoherence. If true, this would prove an intimate connection between single-shot state transitions in unitary quantum mechanics and the von Neumann entropy. Our results add significant support to recent insights that, contrary to common wisdom, the standard von Neumann entropy also characterizes single-shot situations and opens up the possibility for operational single-shot interpretations of other standard entropic quantities. We discuss implications of these insights to readings of the third law of quantum thermodynamics and hint at potentially profound implications to holography.
冯·诺依曼熵是量子信息论中的一个关键量,大致来说,它量化了在一种通常被称为渐近的情况下,当有许多相同且独立(i.i.d.)的态副本可用时,一个态中所包含的量子信息量。在本信函中,我们给出了冯·诺依曼熵的一种新的操作表征,它既不需要i.i.d.极限,也不需要任何明确的随机性。我们通过表明冯·诺依曼熵完全刻画了幺正量子力学中的单次态跃迁来做到这一点,只要人们能够利用一个催化剂——一个在跃迁后可以重复使用的辅助系统——以及一个在优选基下具有退相作用的环境。基于这些见解,我们提出并为催化熵猜想提供了证据,该猜想指出即使在没有退相干的情况下上述结果仍然成立。如果这是真的,这将证明幺正量子力学中的单次态跃迁与冯·诺依曼熵之间存在紧密联系。我们的结果为最近的一些见解提供了重要支持,即与通常的看法相反,标准的冯·诺依曼熵也刻画了单次情况,并为其他标准熵量的操作单次解释开辟了可能性。我们讨论了这些见解对量子热力学第三定律解读的影响,并暗示了对全息术可能产生的深刻影响。