Suppr超能文献

用于高光谱图像分类的级联超像素正则化伽柏特征融合

Cascade Superpixel Regularized Gabor Feature Fusion for Hyperspectral Image Classification.

作者信息

Jia Sen, Lin Zhijie, Deng Bin, Zhu Jiasong, Li Qingquan

出版信息

IEEE Trans Neural Netw Learn Syst. 2020 May;31(5):1638-1652. doi: 10.1109/TNNLS.2019.2921564. Epub 2019 Jul 2.

Abstract

A 3-D Gabor wavelet provides an effective way to obtain the spectral-spatial-fused features for hyperspectral image, which has shown advantageous performance for material classification and recognition. In this paper, instead of separately employing the Gabor magnitude and phase features, which, respectively, reflect the intensity and variation of surface materials in local area, a cascade superpixel regularized Gabor feature fusion (CSRGFF) approach has been proposed. First, the Gabor filters with particular orientation are utilized to obtain Gabor features (including magnitude and phase) from the original hyperspectral image. Second, a support vector machine (SVM)-based probability representation strategy is developed to fully exploit the decision information in SVM output, and the achieved confidence score can make the following fusion with Gabor phase more effective. Meanwhile, the quadrant bit coding and Hamming distance metric are applied to encode the Gabor phase features and measure sample similarity in sequence. Third, the carefully defined characteristics of two kinds of features are directly combined together without any weighting operation to describe the weight of samples belonging to each class. Finally, a series of superpixel graphs extracted from the raw hyperspectral image with different numbers of superpixels are employed to successively regularize the weighting cube from over-segmentation to under-segmentation, and the classification performance gradually improves with the decrease in the number of superpixels in the regularization procedure. Four widely used real hyperspectral images have been conducted, and the experimental results constantly demonstrate the superiority of our CSRGFF approach over several state-of-the-art methods.

摘要

三维伽柏小波为获取高光谱图像的光谱-空间融合特征提供了一种有效方法,该方法在材料分类和识别方面表现出了优势性能。在本文中,提出了一种级联超像素正则化伽柏特征融合(CSRGFF)方法,而不是分别使用伽柏幅度和相位特征,这两种特征分别反映了局部区域表面材料的强度和变化。首先,利用具有特定方向的伽柏滤波器从原始高光谱图像中获取伽柏特征(包括幅度和相位)。其次,开发了一种基于支持向量机(SVM)的概率表示策略,以充分利用SVM输出中的决策信息,所获得的置信度分数可使后续与伽柏相位的融合更加有效。同时,应用象限比特编码和汉明距离度量对伽柏相位特征进行编码,并依次测量样本相似度。第三,将精心定义的两种特征的特性直接组合在一起,无需任何加权操作,以描述属于每个类别的样本权重。最后,从原始高光谱图像中提取的一系列具有不同超像素数量的超像素图被用于依次将加权立方体从过分割正则化为欠分割,并且在正则化过程中,随着超像素数量的减少,分类性能逐渐提高。对四幅广泛使用的真实高光谱图像进行了实验,实验结果不断证明我们的CSRGFF方法优于几种最新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验