Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami 904-0495, Japan.
Biomolecules. 2019 Jul 7;9(7):260. doi: 10.3390/biom9070260.
The bacterial flagellum is a large molecular complex composed of thousands of protein subunits for motility. The filamentous part of the flagellum, which is called the axial structure, consists of the filament, the hook, and the rods, with other minor components-the cap protein and the hook associated proteins. They share a common basic architecture of subunit arrangement, but each part shows quite distinct mechanical properties to achieve its specific function. The distal rod and the hook are helical assemblies of a single protein, FlgG and FlgE, respectively. They show a significant sequence similarity but have distinct mechanical characteristics. The rod is a rigid, straight cylinder, whereas the hook is a curved tube with high bending flexibility. Here, we report a structural model of the rod constructed by using the crystal structure of a core fragment of FlgG with a density map obtained previously by electron cryomicroscopy. Our structural model suggests that a segment called L-stretch plays a key role in achieving the distinct mechanical properties of the rod using a structurally similar component protein to that of the hook.
细菌鞭毛是一种由数千个蛋白质亚基组成的大型分子复合物,用于运动。鞭毛的丝状部分称为轴结构,由丝、钩和杆组成,还有其他较小的组件-帽蛋白和钩相关蛋白。它们具有共同的亚基排列的基本结构,但每个部分都表现出相当不同的机械特性,以实现其特定的功能。远端杆和钩分别是单个蛋白质 FlgG 和 FlgE 的螺旋组装体。它们具有显著的序列相似性,但具有不同的机械特性。杆是刚性的直圆柱,而钩是具有高弯曲灵活性的弯曲管。在这里,我们报告了一种使用先前通过电子 cryomicroscopy 获得的密度图的 FlgG 核心片段的晶体结构构建的杆的结构模型。我们的结构模型表明,称为 L-伸展的一段在使用与钩相似的结构组成蛋白实现杆的独特机械特性方面起着关键作用。