Suppr超能文献

HIV-1 逆转录酶识别核苷逆转录酶抑制剂的结构研究:与逆转录酶及拉米夫定和恩曲他滨的活性三磷酸形式的首个晶体结构。

Structural insights into the recognition of nucleoside reverse transcriptase inhibitors by HIV-1 reverse transcriptase: First crystal structures with reverse transcriptase and the active triphosphate forms of lamivudine and emtricitabine.

机构信息

Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut.

Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for AIDS Research, Emory University School of Medicine, Atlanta, Georgia.

出版信息

Protein Sci. 2019 Sep;28(9):1664-1675. doi: 10.1002/pro.3681. Epub 2019 Aug 6.

Abstract

The retrovirus HIV-1 has been a major health issue since its discovery in the early 80s. In 2017, over 37 million people were infected with HIV-1, of which 1.8 million were new infections that year. Currently, the most successful treatment regimen is the highly active antiretroviral therapy (HAART), which consists of a combination of three to four of the current 26 FDA-approved HIV-1 drugs. Half of these drugs target the reverse transcriptase (RT) enzyme that is essential for viral replication. One class of RT inhibitors is nucleoside reverse transcriptase inhibitors (NRTIs), a crucial component of the HAART. Once incorporated into DNA, NRTIs function as a chain terminator to stop viral DNA replication. Unfortunately, treatment with NRTIs is sometimes linked to toxicity caused by off-target side effects. NRTIs may also target the replicative human mitochondrial DNA polymerase (Pol γ), causing long-term severe drug toxicity. The goal of this work is to understand the discrimination mechanism of different NRTI analogues by RT. Crystal structures and kinetic experiments are essential for the rational design of new molecules that are able to bind selectively to RT and not Pol γ. Structural comparison of NRTI-binding modes with both RT and Pol γ enzymes highlights key amino acids that are responsible for the difference in affinity of these drugs to their targets. Therefore, the long-term goal of this research is to develop safer, next generation therapeutics that can overcome off-target toxicity.

摘要

自 20 世纪 80 年代初发现以来,逆转录病毒 HIV-1 一直是一个主要的健康问题。2017 年,超过 3700 万人感染了 HIV-1,其中当年有 180 万人新感染。目前,最成功的治疗方案是高效抗逆转录病毒疗法(HAART),它由当前 26 种 FDA 批准的 HIV-1 药物中的三到四种组合而成。这些药物中有一半针对逆转录酶(RT),它是病毒复制所必需的。RT 抑制剂的一类是核苷逆转录酶抑制剂(NRTIs),是 HAART 的重要组成部分。一旦整合到 DNA 中,NRTIs 就作为链终止子发挥作用,阻止病毒 DNA 复制。不幸的是,NRTIs 的治疗有时与脱靶副作用引起的毒性有关。NRTIs 也可能靶向复制性人类线粒体 DNA 聚合酶(Pol γ),导致长期严重的药物毒性。这项工作的目标是了解 RT 对不同 NRTI 类似物的区分机制。晶体结构和动力学实验对于合理设计能够选择性结合 RT 而不是 Pol γ 的新分子至关重要。NRTI 结合模式与 RT 和 Pol γ 酶的结构比较突出了负责这些药物与其靶标亲和力差异的关键氨基酸。因此,这项研究的长期目标是开发更安全的下一代治疗药物,以克服脱靶毒性。

相似文献

引用本文的文献

本文引用的文献

9
The HIV therapy market.艾滋病病毒治疗市场。
Nat Rev Drug Discov. 2016 Jul;15(7):451-2. doi: 10.1038/nrd.2016.69. Epub 2016 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验