Azevedo Raíza, Lopes Jéssika Lawall, de Souza Manuel Macedo, Quirino Betania Ferraz, Cançado Letícia Jungmann, Marins Luis Fernando
1Laboraty of Molecular Biology, Institute of Biological Sciences (ICB), Federal University of Rio Grande (FURG), Av. Itália, Km 8, Rio Grande, RS 96203-900 Brazil.
2Institute of Oceanography (IO), Federal University of Rio Grande (FURG), Av. Itália, Km 8, Rio Grande, RS 96203-900 Brazil.
Biotechnol Biofuels. 2019 Jul 3;12:174. doi: 10.1186/s13068-019-1505-9. eCollection 2019.
The production of glucose from cellulose requires cellulases, which are obtained from decomposing microorganisms such as fungi and bacteria. Among the cellulases, β-glucosidases convert cellobiose to glucose and have low concentration in commercial cocktails used for the production of second-generation (2G) ethanol. Genetic engineering can be used to produce recombinant β-glucosidases, and cyanobacteria may be interesting bioreactors. These photosynthetic microorganisms can be cultured using CO emitted from the first-generation ethanol (1G) industry as a carbon source. In addition, vinasse, an effluent of 1G ethanol production, can be used as a source of nitrogen for cyanobacteria growth. Thus, photosynthetic bioreactors cannot only produce cellulases at a lower cost, but also reduce the environmental impact caused by residues of 1G ethanol production.
In the present work, we produced a strain of capable of expressing high levels of a heterologous β-glucosidase from a microorganism from the Amazonian soil. For this, the pET system was cloned into cyanobacteria genome. This system uses a dedicated T7 RNA polymerase for the expression of the gene of interest under the control of a nickel-inducible promoter. The results showed that the pET system functions efficiently in , once nickel induced T7 RNA polymerase expression which, in turn, induced expression of the gene of the microbial β-glucosidase at high levels when compared with non-induced double transgenic strain. β-glucosidase activity was more than sevenfold higher in the transformed cyanobacteria than in the wild-type strain.
The T7 system promotes high expression levels of the cloned gene in , demonstrating that the arrangement in which an exclusive RNA polymerase is used for transcription of heterologous genes may contribute to high-level gene expression in cyanobacteria. This work was the first to demonstrate the use of cyanobacteria for the production of recombinant β-glucosidases. This strategy could be an alternative to reduce the release of 1G ethanol by-products such as CO and vinasse, not only contributing to decrease the cost of β-glucosidase production, but also mitigating the environmental impacts of ethanol industrial plants.
从纤维素生产葡萄糖需要纤维素酶,纤维素酶可从真菌和细菌等分解微生物中获得。在纤维素酶中,β-葡萄糖苷酶将纤维二糖转化为葡萄糖,且在用于生产第二代(2G)乙醇的商业酶混合物中浓度较低。基因工程可用于生产重组β-葡萄糖苷酶,蓝细菌可能是理想的生物反应器。这些光合微生物可以利用第一代乙醇(1G)工业排放的二氧化碳作为碳源进行培养。此外,1G乙醇生产的废水酒糟可作为蓝细菌生长的氮源。因此,光合生物反应器不仅能以较低成本生产纤维素酶,还能减少1G乙醇生产残留物对环境的影响。
在本研究中,我们构建了一种能够高水平表达来自亚马逊土壤微生物的异源β-葡萄糖苷酶的蓝细菌菌株。为此,将pET系统克隆到蓝细菌基因组中。该系统使用专用的T7 RNA聚合酶在镍诱导型启动子的控制下表达目的基因。结果表明,pET系统在蓝细菌中能有效发挥作用,因为镍诱导了T7 RNA聚合酶的表达,与未诱导的双转基因菌株相比,进而诱导了微生物β-葡萄糖苷酶基因的高水平表达。转化后的蓝细菌中β-葡萄糖苷酶活性比野生型菌株高七倍以上。
T7系统促进了克隆基因在蓝细菌中的高水平表达,表明使用专一的RNA聚合酶转录异源基因的方式可能有助于蓝细菌中的高水平基因表达。这项工作首次证明了利用蓝细菌生产重组β-葡萄糖苷酶。该策略可能是减少1G乙醇副产物如二氧化碳和酒糟排放的一种替代方法,不仅有助于降低β-葡萄糖苷酶的生产成本,还能减轻乙醇工厂对环境的影响。