Department of Pathology and Immunology , Washington University in St. Louis , Saint Louis , Missouri 63110 , United States.
National Health and Environmental Effects Research Laboratory , United States Environmental Protection Agency , Research Triangle Park , North Carolina 27709 , United States.
Chem Res Toxicol. 2019 Aug 19;32(8):1707-1721. doi: 10.1021/acs.chemrestox.9b00223. Epub 2019 Jul 29.
Pediatric patients are at elevated risk of adverse drug reactions, and there is insufficient information on drug safety in children. Complicating risk assessment in children, there are numerous age-dependent changes in the absorption, distribution, metabolism, and elimination of drugs. A key contributor to age-dependent drug toxicity risk is the ontogeny of drug metabolism enzymes, the changes in both abundance and type throughout development from the fetal period through adulthood. Critically, these changes affect not only the overall clearance of drugs but also exposure to individual metabolites. In this study, we introduce time-embedding neural networks in order to model population-level variation in metabolism enzyme expression as a function of age. We use a time-embedding network to model the ontogeny of 23 drug metabolism enzymes. The time-embedding network recapitulates known demographic factors impacting 3A5 expression. The time-embedding network also effectively models the nonlinear dynamics of 2D6 expression, enabling a better fit to clinical data than prior work. In contrast, a standard neural network fails to model these features of 3A5 and 2D6 expression. Finally, we combine the time-embedding model of ontogeny with additional information to estimate age-dependent changes in reactive metabolite exposure. This simple approach identifies age-dependent changes in exposure to valproic acid and dextromethorphan metabolites and suggests potential mechanisms of valproic acid toxicity. This approach may help researchers evaluate the risk of drug toxicity in pediatric populations.
儿科患者发生药物不良反应的风险增加,且儿童用药安全性信息不足。由于儿童药物吸收、分布、代谢和消除方面存在许多依赖年龄的变化,因此风险评估变得复杂。导致药物毒性风险依赖年龄的一个关键因素是药物代谢酶的个体发育,从胎儿期到成年期,这些酶的数量和类型都发生了变化。至关重要的是,这些变化不仅影响药物的总体清除率,还影响对个别代谢物的暴露。在这项研究中,我们引入了时间嵌入神经网络,以便根据年龄来模拟代谢酶表达的群体水平变化。我们使用时间嵌入网络来模拟 23 种药物代谢酶的个体发育。时间嵌入网络再现了影响 3A5 表达的已知人口统计学因素。时间嵌入网络还可以有效地模拟 2D6 表达的非线性动态,与之前的工作相比,能够更好地拟合临床数据。相比之下,标准神经网络无法模拟 3A5 和 2D6 表达的这些特征。最后,我们将个体发育的时间嵌入模型与其他信息相结合,以估计反应性代谢物暴露的年龄依赖性变化。这种简单的方法可以识别丙戊酸和右美沙芬代谢物暴露的年龄依赖性变化,并提示丙戊酸毒性的潜在机制。这种方法可以帮助研究人员评估儿科人群中药物毒性的风险。