CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, UPR 9080, 13 rue Pierre et Marie Curie, F-75005, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France.
Laboratoire de Biologie Cellulaire et Moléculaire des Eucaryotes, Sorbonne Université, CNRS, UMR 8226, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France.
Mitochondrion. 2019 Nov;49:234-244. doi: 10.1016/j.mito.2019.06.010. Epub 2019 Jul 12.
Tethering and homotypic fusion of mitochondrial outer membranes is mediated by large GTPases of the dynamin-related proteins family called the mitofusins. The yeast mitofusin Fzo1 forms high molecular weight complexes and its assembly during membrane fusion likely involves the formation of high order complexes. Consistent with this possibility, mitofusins form oligomers in both cis (on the same lipid bilayer) and trans to mediate membrane attachment and fusion. Here, we utilize our recent Fzo1 model to investigate and discuss the formation of cis and trans mitofusin oligomers. We have built three distinct cis-assembly Fzo1 models that gave rise to three distinct trans-oligomeric models of mitofusin constructs. Each model involves two main components of mitofusin oligomerization: the GTPase and the trunk domains. The oligomeric models proposed in this study were further assessed for stability and dynamics in a membrane environment using a coarse-grained molecular dynamics (MD) simulation approach. A narrow opening 'head-to-head' cis-oligomerization (via the GTPase domain) followed by the antiparallel 'back-to-back' trans-associations (via the trunk domain) appears to be in agreement with all of the available experimental data. More broadly, this study opens new possibilities to start exploring cis and trans conformations for Fzo1 and mitofusins in general.
线粒体外膜的连接和同源融合是由称为线粒体融合蛋白的动力相关蛋白家族的大 GTP 酶介导的。酵母线粒体融合蛋白 Fzo1 形成高分子量复合物,其在膜融合过程中的组装可能涉及高序复合物的形成。与这种可能性一致,线粒体融合蛋白在顺式(在同一脂质双层上)和反式形成寡聚体以介导膜附着和融合。在这里,我们利用我们最近的 Fzo1 模型来研究和讨论顺式和反式线粒体融合蛋白寡聚体的形成。我们构建了三个不同的顺式组装 Fzo1 模型,这些模型产生了三个不同的线粒体融合蛋白构建体的反式寡聚模型。每个模型都涉及线粒体融合蛋白寡聚化的两个主要组件:GTP 酶和主干域。本研究提出的寡聚模型进一步使用粗粒度分子动力学(MD)模拟方法在膜环境中评估其稳定性和动力学。窄开口“头对头”顺式寡聚化(通过 GTP 酶结构域),然后是反平行“背靠背”反式缔合(通过主干结构域),似乎与所有可用的实验数据一致。更广泛地说,这项研究为探索 Fzo1 和线粒体融合蛋白的顺式和反式构象开辟了新的可能性。