Suppr超能文献

为社区药剂师提供药物治疗管理的警报:启发式评估的建议。

Alerts for community pharmacist-provided medication therapy management: recommendations from a heuristic evaluation.

机构信息

Department of Pharmacy Practice, Purdue University College of Pharmacy, 640 Eskenazi Ave, Indianapolis, IN, 46220, USA.

Department of Pharmacy Practice, University of Connecticut School of Pharmacy, Storrs, CT, USA.

出版信息

BMC Med Inform Decis Mak. 2019 Jul 16;19(1):135. doi: 10.1186/s12911-019-0866-0.

Abstract

BACKGROUND

Medication therapy management (MTM) is a service, most commonly provided by pharmacists, intended to identify and resolve medication therapy problems (MTPs) to enhance patient care. MTM is typically documented by the community pharmacist in an MTM vendor's web-based platform. These platforms often include integrated alerts to assist the pharmacist with assessing MTPs. In order to maximize the usability and usefulness of alerts to the end users (e.g., community pharmacists), MTM alert design should follow principles from human factors science. Therefore, the objectives of this study were to 1) evaluate the extent to which alerts for community pharmacist-delivered MTM align with established human factors principles, and 2) identify areas of opportunity and recommendations to improve MTM alert design.

METHODS

Five categories of MTM alerts submitted by community pharmacists were evaluated: 1) indication, 2) effectiveness; 3) safety; 4) adherence; and 5) cost-containment. This heuristic evaluation was guided by the Instrument for Evaluating Human-Factors Principles in Medication-Related Decision Support Alerts (I-MeDeSA) which we adapted and contained 32 heuristics. For each MTM alert, four analysts' individual ratings were summed and a mean score on the modified I-MeDeSA computed. For each heuristic, we also computed the percent of analyst ratings indicating alignment with the heuristic. We did this for all alerts evaluated to produce an "overall" summary of analysts' ratings for a given heuristic, and we also computed this separately for each alert category. Our results focus on heuristics where ≤50% of analysts' ratings indicated the alerts aligned with the heuristic.

RESULTS

I-MeDeSA scores across the five alert categories were similar. Heuristics pertaining to visibility and color were generally met. Opportunities for improvement across all MTM alert categories pertained to the principles of alert prioritization; text-based information; alarm philosophy; and corrective actions.

CONCLUSIONS

MTM alerts have several opportunities for improvement related to human factors principles, resulting in MTM alert design recommendations. Enhancements to MTM alert design may increase the effectiveness of MTM delivery by community pharmacists and result in improved patient outcomes.

摘要

背景

药物治疗管理(MTM)是一项服务,通常由药剂师提供,旨在识别和解决药物治疗问题(MTPs),以改善患者护理。MTM 通常由社区药剂师在 MTM 供应商的基于网络的平台中记录。这些平台通常包括集成警报,以帮助药剂师评估 MTPs。为了最大限度地提高最终用户(例如社区药剂师)对警报的可用性和实用性,MTM 警报设计应遵循人类因素科学原则。因此,本研究的目的是 1)评估社区药剂师提供的 MTM 警报在多大程度上符合既定的人类因素原则,2)确定改进 MTM 警报设计的机会和建议。

方法

评估了社区药剂师提交的五类 MTM 警报:1)适应证;2)有效性;3)安全性;4)依从性;5)成本控制。这项启发式评估由评估药物相关决策支持警报中人因原则的工具(I-MeDeSA)指导,我们对其进行了改编,其中包含 32 项原则。对于每个 MTM 警报,四位分析师的个人评分相加,然后计算出经修改的 I-MeDeSA 的平均得分。对于每个启发式原则,我们还计算了表明与该启发式原则一致的分析师评分的百分比。我们对所有评估的警报进行了此项操作,以产生给定启发式原则下分析师评分的“总体”摘要,并且我们还分别为每个警报类别进行了此项计算。我们的结果侧重于分析师评分表明警报与启发式原则一致的百分比≤50%的启发式原则。

结果

五个警报类别之间的 I-MeDeSA 得分相似。与可见性和颜色相关的启发式原则通常得到满足。所有 MTM 警报类别都有改进的机会,涉及警报优先级、基于文本的信息、报警哲学和纠正措施的原则。

结论

MTM 警报在人类因素原则方面有几个改进的机会,从而产生了 MTM 警报设计建议。MTM 警报设计的增强可以提高社区药剂师提供 MTM 的效果,并改善患者的治疗效果。

相似文献

1
Alerts for community pharmacist-provided medication therapy management: recommendations from a heuristic evaluation.
BMC Med Inform Decis Mak. 2019 Jul 16;19(1):135. doi: 10.1186/s12911-019-0866-0.
2
A user-centered evaluation of medication therapy management alerts for community pharmacists: Recommendations to improve usability and usefulness.
Res Social Adm Pharm. 2021 Aug;17(8):1433-1443. doi: 10.1016/j.sapharm.2020.10.015. Epub 2020 Nov 4.
3
Analysis of pharmacist-provided medication therapy management (MTM) services in community pharmacies over 7 years.
J Manag Care Pharm. 2009 Jan-Feb;15(1):18-31. doi: 10.18553/jmcp.2009.15.1.18.
5
Comparison of the validity, perceived usefulness, and usability of I-MeDeSA and TEMAS, two tools to evaluate alert system usability.
Int J Med Inform. 2023 Jul;175:105091. doi: 10.1016/j.ijmedinf.2023.105091. Epub 2023 May 10.
6
Do user preferences align with human factors assessment scores of drug-drug interaction alerts?
Health Informatics J. 2020 Mar;26(1):563-575. doi: 10.1177/1460458219840210. Epub 2019 Apr 11.
7
Evaluation of medication alerts in electronic health records for compliance with human factors principles.
J Am Med Inform Assoc. 2014 Oct;21(e2):e332-40. doi: 10.1136/amiajnl-2013-002279. Epub 2014 Apr 29.
8
Variation in Medication Therapy Management Delivery: Implications for Health Care Policy.
J Manag Care Spec Pharm. 2018 Sep;24(9):896-902. doi: 10.18553/jmcp.2018.24.9.896.
9
Perceptions of patients on Medicare Part D medication therapy management services.
J Am Pharm Assoc (2003). 2009 May-Jun;49(3):392-8. doi: 10.1331/JAPhA.2009.08008.

引用本文的文献

本文引用的文献

1
The use of computer-interpretable clinical guidelines to manage care complexities of patients with multimorbid conditions: A review.
Digit Health. 2018 Oct 3;4:2055207618804927. doi: 10.1177/2055207618804927. eCollection 2018 Jan-Dec.
2
Variation in Medication Therapy Management Delivery: Implications for Health Care Policy.
J Manag Care Spec Pharm. 2018 Sep;24(9):896-902. doi: 10.18553/jmcp.2018.24.9.896.
4
Improving medication-related clinical decision support.
Am J Health Syst Pharm. 2018 Feb 15;75(4):239-246. doi: 10.2146/ajhp160830.
7
9
Usability flaws of medication-related alerting functions: A systematic qualitative review.
J Biomed Inform. 2015 Jun;55:260-71. doi: 10.1016/j.jbi.2015.03.006. Epub 2015 Mar 25.
10
The role of clinical decision support in pharmacist response to drug-interaction alerts.
Res Social Adm Pharm. 2015 May-Jun;11(3):480-6. doi: 10.1016/j.sapharm.2014.09.005. Epub 2014 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验