Suppr超能文献

基于黏弹性微流控的简单直通道实现无鞘微藻与细菌的分离。

Sheathless separation of microalgae from bacteria using a simple straight channel based on viscoelastic microfluidics.

机构信息

School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.

Department of Chemistry, University of Tokyo, Tokyo, Japan.

出版信息

Lab Chip. 2019 Sep 7;19(17):2811-2821. doi: 10.1039/c9lc00482c. Epub 2019 Jul 17.

Abstract

Microalgae cells have been recognized as a promising sustainable resource to meet worldwide growing demands for renewable energy, food, livestock feed, water, cosmetics, pharmaceuticals, and materials. In order to ensure high-efficiency and high-quality production of biomass, biofuel, or bio-based products, purification procedures prior to the storage and cultivation of the microalgae from contaminated bacteria are of great importance. The present work proposed and developed a simple, sheathless, and efficient method to separate microalgae Chlorella from bacteria Bacillus Subtilis in a straight channel using the viscoelasticity of the medium. Microalgae and bacteria migrate to different lateral positions closer to the channel centre and channel walls respectively. Fluorescent microparticles with 1 μm and 5 μm diameters were first used to mimic the behaviours of bacteria and microalgae to optimize the separating conditions. Subsequently, size-based separation in Newtonian fluid and in viscoelastic fluid in straight channels with different aspect ratios was compared and demonstrated. Under the optimal condition, the removal ratio for 1 μm microparticles and separation efficiency for 5 μm particles can reach up to 98.28% and 93.85% respectively. For bacteria and microalgae cells separation, the removal ratio for bacteria and separation efficiency for microalgae cells is 92.69% and 100% respectively. This work demonstrated the continuous and sheathless separation of microalgae from bacteria for the first time by viscoelastic microfluidics. This technique can also be applied as an efficient and user-friendly method to separate mammalian cells or other kinds of cells.

摘要

微藻细胞已被认为是一种有前途的可持续资源,可以满足全球对可再生能源、食品、牲畜饲料、水、化妆品、药品和材料日益增长的需求。为了确保高效、高质量地生产生物质、生物燃料或基于生物的产品,在储存和培养微藻之前,对受污染细菌进行净化处理非常重要。本工作提出并开发了一种简单、无鞘、高效的方法,利用介质的粘弹性,在直通道中从枯草芽孢杆菌中分离小球藻。微藻和细菌分别迁移到靠近通道中心和通道壁的不同横向位置。首先使用直径为 1 μm 和 5 μm 的荧光微球来模拟细菌和微藻的行为,以优化分离条件。随后,比较并演示了在牛顿流体和粘弹性流体中,在不同纵横比的直通道中进行基于尺寸的分离。在最佳条件下,1 μm 微球的去除率和 5 μm 颗粒的分离效率分别可达 98.28%和 93.85%。对于细菌和微藻细胞的分离,细菌的去除率和微藻细胞的分离效率分别为 92.69%和 100%。本工作首次通过粘弹性微流控技术连续、无鞘地分离微藻和细菌。该技术还可以作为一种高效、易用的方法,用于分离哺乳动物细胞或其他类型的细胞。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验