Suppr超能文献

一种宽带且强可见光吸收的光敏剂促进析氢。

A broadband and strong visible-light-absorbing photosensitizer boosts hydrogen evolution.

作者信息

Wang Ping, Guo Song, Wang Hong-Juan, Chen Kai-Kai, Zhang Nan, Zhang Zhi-Ming, Lu Tong-Bu

机构信息

International Joint Research Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 300384, Tianjin, China.

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, 510275, Guangzhou, China.

出版信息

Nat Commun. 2019 Jul 17;10(1):3155. doi: 10.1038/s41467-019-11099-8.

Abstract

Developing broadband and strong visible-light-absorbing photosensitizer is highly desired for dramatically improving the utilization of solar energy and boosting artificial photosynthesis. Herein, we develop a facile strategy to co-sensitize Ir-complex with Coumarins and boron dipyrromethene to explore photosensitizer with a broadband covering ca. 50% visible light region (Ir-4). This type of photosensitizer is firstly introduced into water splitting system, exhibiting significantly enhanced performance with over 21 times higher than that of typical Ir(ppy)(bpy), and the turnover number towards Ir-4 reaches to 115840, representing the most active sensitizer among reported molecular photocatalytic systems. Experimental and theoretical investigations reveal that the Ir-mediation not only achieves a long-lived boron dipyrromethene-localized triplet state, but also makes an efficient excitation energy transfer from Coumarin to boron dipyrromethene to trigger the electron transfer. These findings provide an insight for developing broadband and strong visible-light-absorbing multicomponent arrays on molecular level for efficient artificial photosynthesis.

摘要

开发宽带且强可见光吸收的光敏剂对于大幅提高太阳能利用效率和促进人工光合作用非常必要。在此,我们开发了一种简便策略,将铱配合物与香豆素和硼二吡咯亚甲基共敏化,以探索覆盖约50%可见光区域的宽带光敏剂(Ir-4)。这种类型的光敏剂首次被引入到水分解系统中,表现出显著增强的性能,比典型的Ir(ppy)(bpy)高出21倍以上,并且Ir-4的周转数达到115840,是已报道的分子光催化系统中活性最高的敏化剂。实验和理论研究表明,铱介导不仅实现了长寿命的硼二吡咯亚甲基局域三重态,还实现了从香豆素到硼二吡咯亚甲基的高效激发能量转移以触发电子转移。这些发现为在分子水平上开发用于高效人工光合作用的宽带且强可见光吸收的多组分阵列提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48c5/6637189/c5f7cd7f0f9b/41467_2019_11099_Fig1_HTML.jpg

相似文献

1
A broadband and strong visible-light-absorbing photosensitizer boosts hydrogen evolution.
Nat Commun. 2019 Jul 17;10(1):3155. doi: 10.1038/s41467-019-11099-8.
2
Broadband and strong visible-light-absorbing cuprous sensitizers for boosting photosynthesis.
Proc Natl Acad Sci U S A. 2022 Dec 13;119(50):e2213479119. doi: 10.1073/pnas.2213479119. Epub 2022 Dec 5.
3
Strong Visible-Light-Absorbing Cuprous Sensitizers for Dramatically Boosting Photocatalysis.
Angew Chem Int Ed Engl. 2020 Jul 27;59(31):12951-12957. doi: 10.1002/anie.202003251. Epub 2020 May 20.
4
Earth-abundant Zn-dipyrrin chromophores for efficient CO photoreduction.
Natl Sci Rev. 2024 Apr 1;11(6):nwae130. doi: 10.1093/nsr/nwae130. eCollection 2024 Jun.
6
Photocatalytic Systems for CO Reduction: Metal-Complex Photocatalysts and Their Hybrids with Photofunctional Solid Materials.
Acc Chem Res. 2022 Apr 5;55(7):978-990. doi: 10.1021/acs.accounts.1c00705. Epub 2022 Mar 7.
7
Construction of Robust Iridium(III) Complex-Based Photosensitizer for Boosting Hydrogen Evolution.
Inorg Chem. 2023 May 15;62(19):7212-7219. doi: 10.1021/acs.inorgchem.2c04471. Epub 2023 May 3.
9
Judicious Design of Cationic, Cyclometalated Ir(III) Complexes for Photochemical Energy Conversion and Optoelectronics.
Acc Chem Res. 2018 Feb 20;51(2):352-364. doi: 10.1021/acs.accounts.7b00375. Epub 2018 Jan 16.

引用本文的文献

1
Self-Assembly Regulated Photocatalysis of Porphyrin-TiO Nanocomposites.
Molecules. 2024 Aug 15;29(16):3872. doi: 10.3390/molecules29163872.
3
Triplet quenching pathway control with molecular dyads enables the identification of a highly oxidizing annihilator class.
Chem Sci. 2023 Jul 17;14(32):8583-8591. doi: 10.1039/d3sc01725g. eCollection 2023 Aug 16.
4
6
Broadband and strong visible-light-absorbing cuprous sensitizers for boosting photosynthesis.
Proc Natl Acad Sci U S A. 2022 Dec 13;119(50):e2213479119. doi: 10.1073/pnas.2213479119. Epub 2022 Dec 5.
7
Divergent Approach for -Heteroleptic Cyclometalated Iridium Complexes Using Triisopropylsilylethynyl-Substituted Synthons.
Organometallics. 2022 Sep 12;41(17):2487-2493. doi: 10.1021/acs.organomet.2c00292. Epub 2022 Aug 19.
8
Co-facial π-π Interaction Expedites Sensitizer-to-Catalyst Electron Transfer for High-Performance CO Photoreduction.
JACS Au. 2022 Apr 7;2(6):1359-1374. doi: 10.1021/jacsau.2c00073. eCollection 2022 Jun 27.
9
Rational design of iridium-porphyrin conjugates for novel synergistic photodynamic and photothermal therapy anticancer agents.
Chem Sci. 2021 Mar 29;12(16):5918-5925. doi: 10.1039/d1sc00126d. eCollection 2021 Apr 28.
10
Nanostructured Photothermal Materials for Environmental and Catalytic Applications.
Molecules. 2021 Dec 13;26(24):7552. doi: 10.3390/molecules26247552.

本文引用的文献

2
Intramolecular Energy and Electron Transfers in Bodipy Naphthalenediimide Triads.
J Phys Chem A. 2018 Jul 26;122(29):6081-6088. doi: 10.1021/acs.jpca.8b03884. Epub 2018 Jul 16.
3
Cobalt-catalyzed asymmetric hydrogenation of enamides enabled by single-electron reduction.
Science. 2018 May 25;360(6391):888-893. doi: 10.1126/science.aar6117.
5
Near-Infrared Light-Driven Hydrogen Evolution from Water Using a Polypyridyl Triruthenium Photosensitizer.
Angew Chem Int Ed Engl. 2018 Jan 2;57(1):208-212. doi: 10.1002/anie.201708996. Epub 2017 Nov 2.
6
Ultrafast Electron Dynamics in Solar Energy Conversion.
Chem Rev. 2017 Aug 23;117(16):10940-11024. doi: 10.1021/acs.chemrev.6b00807. Epub 2017 Aug 14.
8
Metal-complex chromophores for solar hydrogen generation.
Chem Soc Rev. 2017 Feb 6;46(3):603-631. doi: 10.1039/c6cs00436a.
9
Impact of Substituents on Excited-State and Photosensitizing Properties in Cationic Iridium(III) Complexes with Ligands of Coumarin 6.
Inorg Chem. 2016 Sep 6;55(17):8723-35. doi: 10.1021/acs.inorgchem.6b01279. Epub 2016 Aug 22.
10
Light Absorption and Energy Transfer in the Antenna Complexes of Photosynthetic Organisms.
Chem Rev. 2017 Jan 25;117(2):249-293. doi: 10.1021/acs.chemrev.6b00002. Epub 2016 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验