Grupo IEC, Departamento de Ingeniería Química y Nuclear, E.T.S.I. Industriales, Universitat Politècnica de València, P.O. Box 22012, E-46071, Valencia, Spain; Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais (PPGE3M), Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil.
Grupo IEC, Departamento de Ingeniería Química y Nuclear, E.T.S.I. Industriales, Universitat Politècnica de València, P.O. Box 22012, E-46071, Valencia, Spain.
Chemosphere. 2019 Dec;236:124318. doi: 10.1016/j.chemosphere.2019.07.049. Epub 2019 Jul 6.
The present paper deals with the atenolol (ATL) degradation by advanced anodic oxidation using a boron-doped diamond anode supported on niobium (Nb/BDD). Cyclic voltammetry performed on this electrode revealed that it presents a high quality (diamond-sp/sp-carbon ratio), high potential for OER and that ATL can be oxidized directly and/or indirectly by the electrogenerated oxidants, such as hydroxyl radicals, persulfate ions and sulfate radicals. Electrolysis experiments demonstrated that ATL degradation and mineralization follow a mixed (first and zero) order kinetics depending on the applied current density. At high applied current densities, the amount of OH radicals is very high and the overall reaction is limited by the transport of ATL (pseudo first-order kinetics) whereas for low applied current densities, the rate of OH radicals generation at the anode is slower than the rate of arrival of ATL molecules (pseudo-zero order kinetics). Estimated values of k and k based on the assumption of pseudo-zero or pseudo-first order kinetics were carried oud as a function of the supporting electrolyte concentration, indicating that both parameters increased with its concentration due the higher production of sulfate reactive species that play an important role in degradation. Finally, MCE increased with the decrease of current density, due to the lower amount of OH present in solution, since this species could be rapidly wasted in parasitic reactions; and the increase of sulfate concentration due to the more efficient production of persulfate.
本文研究了使用铌(Nb/BDD)支撑的掺硼金刚石阳极进行高级阳极氧化对阿替洛尔(ATL)的降解作用。对该电极进行的循环伏安法表明,它具有高质量(金刚石-sp/sp-碳比)、高 OER 电位,并且 ATL 可以直接和/或间接通过电生成的氧化剂(如羟基自由基、过硫酸盐离子和硫酸根自由基)氧化。电解实验表明,ATL 的降解和矿化遵循混合(一级和零级)动力学,具体取决于施加的电流密度。在高施加电流密度下,OH 自由基的数量非常高,整体反应受到 ATL 传输的限制(准一级动力学),而在低施加电流密度下,阳极上 OH 自由基的生成速率比 ATL 分子的到达速率慢(准零级动力学)。基于准零级或准一级动力学的假设,对 k 和 k 值进行了估算,并作为支持电解质浓度的函数,表明由于硫酸根反应性物种的产量更高,这两个参数都随其浓度的增加而增加,这些物种在降解中起着重要作用。最后,由于溶液中 OH 数量较少,MCE 随电流密度的降低而增加,因为这种物质会在寄生反应中迅速消耗;而由于过硫酸盐的产量更高,硫酸盐浓度也会增加。