Suppr超能文献

绝热量子磁通参量器:迈向构建极高能效的电路与系统

Adiabatic Quantum-Flux-Parametron: Towards Building Extremely Energy-Efficient Circuits and Systems.

作者信息

Chen Olivia, Cai Ruizhe, Wang Yanzhi, Ke Fei, Yamae Taiki, Saito Ro, Takeuchi Naoki, Yoshikawa Nobuyuki

机构信息

Yokohama National University, Institute of Advanced Sciences, Yokohama, 2408501, Japan.

Northeastern University, Department of Electrical and Computer Engineering, Boston, 02115, USA.

出版信息

Sci Rep. 2019 Jul 19;9(1):10514. doi: 10.1038/s41598-019-46595-w.

Abstract

Adiabatic Quantum-Flux-Parametron (AQFP) logic is an adiabatic superconductor logic family that has been proposed as a future technology towards building extremely energy-efficient computing systems. In AQFP logic, dynamic energy dissipation can be drastically reduced due to the adiabatic switching operations using AC excitation currents, which serve as both clock signals and power supplies. As a result, AQFP could overcome the power/energy dissipation limitation in conventional superconductor logic families such as rapid-single-flux-quantum (RSFQ). Simulation and experimental results show that AQFP logic can achieve an energy-delay-product (EDP) near quantum limit using practical circuit parameters and available fabrication processes. To shed some light on the design automation and guidelines of AQFP circuits, in this paper we present an automatic synthesis framework for AQFP and perform synthesis on 18 circuits, including 11 ISCAS-85 circuit benchmarks, 6 deep-learning accelerator components, and a 32-bit RISC-V ALU, based on our developed standard cell library of AQFP technology. Synthesis results demonstrate the significant advantage of AQFP technology. We forecast 9,313×, 25,242× and 48,466× energy-per-operation advantage, compared to the synthesis results of TSMC (Taiwan Semiconductor Manufacturing Company) 12 nm fin field-effect transistor (FinFET), 28 nm and 40 nm complementary metal-oxide-semiconductor (CMOS) technology nodes, respectively.

摘要

绝热量子磁通参数管(AQFP)逻辑是一种绝热超导逻辑系列,已被提议作为构建极具能源效率的计算系统的未来技术。在AQFP逻辑中,由于使用交流激励电流的绝热开关操作,动态能量耗散可大幅降低,这些交流激励电流同时用作时钟信号和电源。因此,AQFP可以克服传统超导逻辑系列(如快速单磁通量子(RSFQ))中的功耗/能量耗散限制。仿真和实验结果表明,使用实际电路参数和现有的制造工艺,AQFP逻辑可以实现接近量子极限的能量延迟积(EDP)。为了阐明AQFP电路的设计自动化和指导方针,在本文中,我们提出了一种用于AQFP的自动综合框架,并基于我们开发的AQFP技术标准单元库,对18个电路进行综合,包括11个ISCAS - 85电路基准测试、6个深度学习加速器组件和一个32位RISC - V算术逻辑单元(ALU)。综合结果证明了AQFP技术的显著优势。与台积电(台湾积体电路制造股份有限公司)12纳米鳍式场效应晶体管(FinFET)、28纳米和40纳米互补金属氧化物半导体(CMOS)技术节点的综合结果相比,我们预测每操作能量优势分别为9313倍、25242倍和48466倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f73/6642163/ec0ad5fe6c3f/41598_2019_46595_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验