Suppr超能文献

皮质下脑区神经活动可预测人类局灶性癫痫发作。

Intracortical neural activity distal to seizure-onset-areas predicts human focal seizures.

机构信息

Department of Neuroscience, Brown University, Providence, Rhode Island, United States of America.

Carney Institute for Brain Science, Brown University, Providence, Rhode Island, United States of America.

出版信息

PLoS One. 2019 Jul 22;14(7):e0211847. doi: 10.1371/journal.pone.0211847. eCollection 2019.

Abstract

The apparent unpredictability of epileptic seizures has a major impact in the quality of life of people with pharmacologically resistant seizures. Here, we present initial results and a proof-of-concept of how focal seizures can be predicted early in advance based on intracortical signals recorded from small neocortical patches away from identified seizure onset areas. We show that machine learning algorithms can discriminate between interictal and preictal periods based on multiunit activity (i.e. thresholded action potential counts) and multi-frequency band local field potentials recorded via 4 X 4 mm2 microelectrode arrays. Microelectrode arrays were implanted in 5 patients undergoing neuromonitoring for resective surgery. Post-implant analysis revealed arrays were outside the seizure onset areas. Preictal periods were defined as the 1-hour period leading to a seizure. A 5-minute gap between the preictal period and the putative seizure onset was enforced to account for potential errors in the determination of actual seizure onset times. We used extreme gradient boosting and long short-term memory networks for prediction. Prediction accuracy based on the area under the receiver operating characteristic curves reached 90% for at least one feature type in each patient. Importantly, successful prediction could be achieved based exclusively on multiunit activity. This result indicates that preictal activity in the recorded neocortical patches involved not only subthreshold postsynaptic potentials, perhaps driven by the distal seizure onset areas, but also neuronal spiking in distal recurrent neocortical networks. Beyond the commonly identified seizure onset areas, our findings point to the engagement of large-scale neuronal networks in the neural dynamics building up toward a seizure. Our initial results obtained on currently available human intracortical microelectrode array recordings warrant new studies on larger datasets, and open new perspectives for seizure prediction and control by emphasizing the contribution of multiscale neural signals in large-scale neuronal networks.

摘要

癫痫发作的明显不可预测性对药物难治性癫痫患者的生活质量有重大影响。在这里,我们展示了如何基于远离确定的发作起始区的小新皮层贴片上记录的皮层内信号,尽早预测局灶性癫痫发作的初步结果和概念验证。我们表明,机器学习算法可以根据多单位活动(即阈值动作电位计数)和通过 4 X 4 mm2 微电极阵列记录的多频带局部场电位来区分发作间期和发作前期。微电极阵列被植入 5 名接受神经监测以进行切除性手术的患者中。植入后分析显示,阵列位于发作起始区之外。发作前期定义为导致癫痫发作的前 1 小时。为了考虑到实际发作起始时间确定中的潜在误差,在发作前期和假定的发作起始之间强制设置了 5 分钟的间隔。我们使用极端梯度增强和长短期记忆网络进行预测。在每个患者中,至少有一种特征类型的基于接收器操作特性曲线下面积的预测准确率达到 90%。重要的是,仅基于多单位活动就可以实现成功预测。这一结果表明,记录的新皮层贴片中的发作前期活动不仅涉及阈下突触后电位,这些电位可能由远端发作起始区驱动,而且还涉及远端复发性新皮层网络中的神经元放电。除了常见的发作起始区之外,我们的发现还指向参与向癫痫发作发展的大规模神经元网络的参与。我们在当前可用的人类皮层内微电极阵列记录上获得的初步结果需要在更大的数据集上进行新的研究,并通过强调多尺度神经信号在大规模神经元网络中的贡献,为癫痫发作预测和控制开辟新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6645464/88ff8f746722/pone.0211847.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验