Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
Phys Rev E. 2019 Jun;99(6-1):062415. doi: 10.1103/PhysRevE.99.062415.
We use perturbative renormalization group theory to study the kinetics of protein aggregation phenomena in a unified manner across multiple timescales. Using this approach, we find that, irrespective of the specific molecular details or experimental conditions, filamentous assembly systems display universal behavior in time. Moreover, we show that the universality classes for protein aggregation correspond to simple autocatalytic processes and that the diversity of behavior in these systems is determined solely by the reaction order for secondary nucleation with respect to the protein concentration, which labels all possible universality classes. We validate these predictions on experimental data for the aggregation of several different proteins at several different initial concentrations, which by appropriate coordinate transformations we are able to collapse onto universal kinetic growth curves. These results establish the power of the perturbative renormalization group in distilling the ultimately simple temporal behavior of complex protein aggregation systems, creating the possibility to study the kinetics of general self-assembly phenomena in a unified fashion.
我们使用微扰重整化群理论,以统一的方式跨越多个时间尺度来研究蛋白质聚集现象的动力学。通过这种方法,我们发现,无论特定的分子细节或实验条件如何,丝状组装系统在时间上表现出普遍的行为。此外,我们表明,蛋白质聚集的普遍性类对应于简单的自催化过程,而这些系统中行为的多样性仅由次级成核相对于蛋白质浓度的反应级数决定,这标记了所有可能的普遍性类。我们在几个不同初始浓度下几种不同蛋白质聚集的实验数据上验证了这些预测,通过适当的坐标变换,我们能够将其折叠成通用的动力学生长曲线。这些结果确立了微扰重整化群在提取复杂蛋白质聚集系统最终简单时间行为方面的强大功能,为以统一的方式研究一般自组装现象的动力学创造了可能性。