Instituto de Magnetismo Aplicado, Universidad Complutense de Madrid-ADIF-CSIC, P.O. Box, 155, Las Rozas, 28230 Madrid, Spain.
Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain.
Sensors (Basel). 2019 Jul 11;19(14):3060. doi: 10.3390/s19143060.
Co-based amorphous microwires presenting the giant magnetoimpedance effect are proposed as sensing elements for high sensitivity biosensors. In this work we report an experimental method for contactless detection of stress, temperature, and liquid concentration with application in medical sensors using the giant magnetoimpedance effect on microwires in the GHz range. The method is based on the scattering of electromagnetic microwaves by FeCoSiB amorphous metallic microwires. A modulation of the scattering parameter is achieved by applying a magnetic bias field that tunes the magnetic permeability of the ferromagnetic microwires. We demonstrate that the OFF/ON switching of the bias activates or cancels the amorphous ferromagnetic microwires (AFMW) antenna behavior. We show the advantages of measuring the performing time dependent frequency sweeps. In this case, the AC-bias modulation of the scattering coefficient versus frequency may be clearly appreciated. Furthermore, this modulation is enhanced by using arrays of microwires with an increasing number of individual microwires according to the antenna radiation theory. Transmission spectra show significant changes in the range of 3 dB for a relatively weak magnetic field of 15 Oe. A demonstration of the possibilities of the method for biomedical applications is shown by means of wireless temperature detector from 0 to 100 °C.
基于钴的非晶态金属微丝具有巨磁阻抗效应,可用作高灵敏度生物传感器的传感元件。在这项工作中,我们报告了一种使用微波在 GHz 范围内的巨磁阻抗效应进行非接触式检测应力、温度和液体浓度的实验方法,并将其应用于医学传感器。该方法基于铁钴硅硼非晶态金属微丝对电磁波的散射。通过施加偏置磁场来调节铁磁微丝的磁导率,从而实现散射参数的调制。我们证明,通过施加偏置磁场来实现开/关切换,可以激活或取消非晶铁磁微丝(AFMW)天线的行为。我们展示了测量随时间变化的频率扫描的优势。在这种情况下,可以清楚地观察到散射系数随频率的交流偏置调制。此外,根据天线辐射理论,通过使用具有越来越多的单个微丝的微丝阵列,可以增强这种调制。传输谱在相对较弱的磁场(15 Oe)下显示出 3 dB 范围内的显著变化。通过无线温度探测器从 0 到 100°C,展示了该方法在生物医学应用中的可能性。
Nanomaterials (Basel). 2021-5-2
Sensors (Basel). 2020-3-11
Sensors (Basel). 2019-11-21
IEEE Trans Biomed Circuits Syst. 2016-4
Biosens Bioelectron. 2016-10-20
Sci Rep. 2023-5-27
Nanomaterials (Basel). 2021-5-2
Nanomaterials (Basel). 2019-2-8