Center for Environmental and Systems Biochemistry (CESB)/Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40536.
Center for Environmental and Systems Biochemistry (CESB)/Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536.
J Biol Chem. 2019 Sep 6;294(36):13464-13477. doi: 10.1074/jbc.RA119.008743. Epub 2019 Jul 23.
Nucleotide synthesis is essential to proliferating cells, but the preferred precursors for biosynthesis are not defined in human cancer tissues. We have employed multiplexed stable isotope-resolved metabolomics to track the metabolism of [C]glucose, D-glycine, [C]glycine, and D-serine into purine nucleotides in freshly resected cancerous and matched noncancerous lung tissues from nonsmall cell lung cancer (NSCLC) patients, and we compared the metabolism with established NSCLC PC9 and A549 cell lines Surprisingly, [C]glucose was the best carbon source for purine synthesis in human NSCLC tissues, in contrast to the noncancerous lung tissues from the same patient, which showed lower mitotic indices and MYC expression. We also observed that D-Ser was preferentially incorporated into purine rings over D-glycine in both tissues and cell lines. suppression attenuated [C]glucose, D-serine, and [C]glycine incorporation into purines and reduced proliferation in PC9 but not in A549 cells. Using detailed kinetic modeling, we showed that the preferred use of glucose as a carbon source for purine ring synthesis in NSCLC tissues involves cytoplasmic activation/compartmentation of the glucose-to-serine pathway and enhanced reversed one-carbon fluxes that attenuate exogenous serine incorporation into purines. Our findings also indicate that the substrate for nucleotide synthesis differs profoundly between cancer cell lines and fresh human lung cancer tissues; the latter preferred glucose to exogenous serine or glycine but not the former. This distinction in substrate utilization in purine synthesis in human cancer tissues should be considered when targeting one-carbon metabolism for cancer therapy.
核苷酸合成对于增殖细胞至关重要,但在人类癌症组织中,生物合成的首选前体尚未确定。我们采用多重稳定同位素分辨代谢组学方法,追踪[C]葡萄糖、D-甘氨酸、[C]甘氨酸和 D-丝氨酸在非小细胞肺癌(NSCLC)患者新鲜切除的癌组织和匹配的非癌组织中代谢为嘌呤核苷酸的情况,并将其与已建立的 NSCLC PC9 和 A549 细胞系进行比较。令人惊讶的是,[C]葡萄糖是人类 NSCLC 组织中嘌呤合成的最佳碳源,而与同一患者的非癌组织相比,后者的有丝分裂指数和 MYC 表达较低。我们还观察到,D-丝氨酸在两种组织和细胞系中优先掺入嘌呤环,而不是 D-甘氨酸。抑制 D-丝氨酸合成可减弱[C]葡萄糖、D-丝氨酸和[C]甘氨酸掺入嘌呤,并降低 PC9 细胞但不降低 A549 细胞的增殖。通过详细的动力学建模,我们表明 NSCLC 组织中优先利用葡萄糖作为嘌呤环合成的碳源涉及葡萄糖-丝氨酸途径的细胞质激活/区室化以及增强的反向一碳通量,从而减弱外源性丝氨酸掺入嘌呤。我们的研究结果还表明,在癌细胞系和新鲜人肺癌组织之间,核苷酸合成的底物存在显著差异;后者优先利用葡萄糖而不是外源性丝氨酸或甘氨酸,但前者并非如此。在针对癌症治疗的一碳代谢时,应考虑到在人类癌症组织中嘌呤合成中底物利用的这种差异。
J Pediatr Gastroenterol Nutr. 1983-5
Biochim Biophys Acta. 1978-12-1
Adv Nutr. 2015-9-15
Drug Des Devel Ther. 2025-2-19
Cancers (Basel). 2025-1-6
Methods Mol Biol. 2025
Int J Mol Sci. 2024-9-21
Microarrays (Basel). 2015-3-24
Bio Protoc. 2016-2-5
Nat Genet. 2015-12